32 research outputs found

    NeuroNorm:An R package to standardize multiple structural MRI

    Get PDF
    Preprocessing of structural MRI involves multiple steps to clean and standardize data before further analysis. Typically, researchers use numerous tools to create tailored preprocessing workflows that adjust to their dataset. This process hinders research reproducibility and transparency. In this paper, we introduce NeuroNorm, a robust and reproducible preprocessing pipeline that addresses the challenges of preparing structural MRI data. NeuroNorm adapts its workflow to the input datasets without manual intervention and uses state-of-the-art methods to guarantee high-standard results. We demonstrate NeuroNorm’s strength by preprocessing hundreds of MRI scans from three different sources with specific parameters on image dimensions, voxel intensity ranges, patients characteristics, acquisition protocols and scanner type. The preprocessed images can be visually and analytically compared to each other as they share the same geometrical and intensity space. NeuroNorm supports clinicians and researchers with a robust, adaptive and comprehensible preprocessing pipeline, increasing and certifying the sensitivity and validity of subsequent analyses. NeuroNorm requires minimal user inputs and interaction, making it a userfriendly set of tools for users with basic programming experience

    Wetting films on chemically heterogeneous substrates

    Full text link
    Based on a microscopic density functional theory we investigate the morphology of thin liquidlike wetting films adsorbed on substrates endowed with well-defined chemical heterogeneities. As paradigmatic cases we focus on a single chemical step and on a single stripe. In view of applications in microfluidics the accuracy of guiding liquids by chemical microchannels is discussed. Finally we give a general prescription of how to investigate theoretically the wetting properties of substrates with arbitrary chemical structures.Comment: 56 pages, RevTeX, 20 Figure

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    The mammalian gene function resource: The International Knockout Mouse Consortium

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Spatially informed Bayesian neural network for neurodegenerative diseases classification

    Get PDF
    Magnetic resonance imaging (MRI) plays an increasingly important role in the diagnosis and prognosis of neurodegenerative diseases. One field of extensive clinical use of MRI is the accurate and automated classification of degenerative disorders. Most of current classification studies either do not mirror medical practice where patients may exhibit early stages of the disease, comorbidities, or atypical variants, or they are not able to produce probabilistic predictions nor account for uncertainty. Also, the spatial heterogeneity of the brain alterations caused by neurodegenerative processes is not usually considered, despite the spatial configuration of the neuronal loss is a characteristic hallmark for each disorder. In this article, we propose a classification technique that incorporates uncertainty and spatial information for distinguishing between healthy subjects and patients from four distinct neurodegenerative diseases: Alzheimer's disease, mild cognitive impairment, Parkinson's disease, and Multiple Sclerosis. We introduce a spatially informed Bayesian neural network (SBNN) that combines a three-dimensional neural network to extract neurodegeneration features from MRI, Bayesian inference to account for uncertainty in diagnosis, and a spatially informed MRI image using hidden Markov random fields to encode cerebral spatial information. The SBNN model demonstrates that classification accuracy increases up to 25% by including a spatially informed MRI scan. Furthermore, the SBNN provides a robust probabilistic diagnosis that resembles clinical decision-making and can account for the heterogeneous medical presentations of neurodegenerative disorders
    corecore