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Preprocessing of structural MRI involves multiple steps to clean and standardize data before further anal-
ysis. Typically, researchers use numerous tools to create tailored preprocessing workflows that adjust to
their dataset. This process hinders research reproducibility and transparency. In this paper, we introduce
NeuroNorm, a robust and reproducible preprocessing pipeline that addresses the challenges of preparing
structural MRI data. NeuroNorm adapts its workflow to the input datasets without manual intervention
and uses state-of-the-art methods to guarantee high-standard results. We demonstrate NeuroNorm’s
strength by preprocessing hundreds of MRI scans from three different sources with specific parameters
on image dimensions, voxel intensity ranges, patients characteristics, acquisition protocols and scanner
type. The preprocessed images can be visually and analytically compared to each other as they share
the same geometrical and intensity space. NeuroNorm supports clinicians and researchers with a robust,
adaptive and comprehensible preprocessing pipeline, increasing and certifying the sensitivity and valid-
ity of subsequent analyses. NeuroNorm requires minimal user inputs and interaction, making it a user-
friendly set of tools for users with basic programming experience.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Magnetic resonance imaging (MRI) has transformed the human
brain’s study, especially brain disorders, since its inception in 1977.
MRI is highly effective for identifying anatomical and structural
changes in brain physiology by using brain tissue molecules’ mag-
netic response [1]. Measures of abnormalities derived from struc-
tural MRI have been markedly practical regarding diagnosis and
assessment of neurodegenerative diseases [2], mental disorders
[3], and brain tumors [4]. Clinical trials have exploited MRI poten-
tial in the characterization of brain disorders and have established
it as a reliable tool for both the diagnostic process and disease pro-
gression monitoring.

The analysis of structural MRI is a growing area of research.
Over the last 20 years, the number of neuroimaging studies involv-
ing structural MRI have increased rapidly. From visual inspection
to delimit brain regions [5,6] to automatic analytical methods to
characterize disorders [7–9], structural MRI has become crucial
in brain medical research. Furthermore, more and more research
institutes, medical institutions and private companies are provid-
ing publicly available datasets. The importance of these datasets
is evident in the neuroimaging research community, where studies
using structural MRI from multiple sources, sites, scans, and sub-
jects are more common in literature [10].

Although structural MRI is a powerful source of information, it
is typically affected by different types of variability in the acquisi-
tion process [11]. For instance, head/body movements and
anatomical dimensions are non-neuronal sources of variability
derived from patient’s particularities [12]. Additionally, other
non-neuronal effects emerge from the characteristics of MRI scan-
ners (e.g., protocols, sequences, and hardware calibration) [13]. The
raw data require a set of corrections, known as preprocessing steps,
to uncover the closest representation of the underlying brain struc-
ture. The preprocessing steps focus on identifying and minimizing
the sources of noise and artifacts in the data before applying any
subsequent processing and analysis [14]. Preprocessing ensures
data cleaning and standardization to validate the interpretability
and consistency of the analysis results.

Preprocessing workflows address two main aspects: the quality
and the signal of the MRI scans. The former reduces the noise to
improve the signal, and the latter sets a specific geometric or inten-
sity space to locate it. Standard preprocessing steps include inho-
mogeneity correction, spatial registration, spatial normalization,
and intensity standardization. Furthermore, preprocessing may
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include further steps for denoising and transforming the signals,
for instance, spatial smoothing for removing high frequencies on
the signals [15] and image harmonization to eliminate scanner
effects [16].

Tools for implementing most of the preprocessing steps are
commonly available in native programming languages and dis-
tributed as software packages. Packages such as FreeSurfer [17],
FSL [18], ANTs [19] and Insight Toolkit [20] are popular in the neu-
roimaging community, as they are open-source tools and freely
accessible. However, given the extensive amount of tools, almost
every neuroimaging study has its own preprocessing pipeline. This
restrains the reproducibility of scientific results and limits the
development of new studies [21]. In a realistic sense, the brain
imaging research needs a robust, automatic and flexible prepro-
cessing workflow that can adjust to numerous and diverse sources
of MRI data and produce highly specified and coherent results.

This paper develops and validates a straightforward preprocess-
ing workflow for structural MRI images to clean and standardize
multiple MRI scans from multiple sites, patients, and studies. The
NeuroNorm package proposes a preprocessing workflow that
addresses both the denoising and transformation of the MRI sig-
nals while preparing the data for further analysis. We use state-
of-the-art preprocessing methods to provide a comprehensive
and robust pipeline to clean and normalize MRI sequences such
as T1-weighted, T2-weighted, and FLAIR sequences. We illustrate
our approach’s power by preprocessing MRI scans of patients with
neurodegenerative diseases from three different data sources (the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), the Parkin-
son’s Progression Markers Initiative (PPMI), and the Multiple
Sclerosis database of the University Medical Center Ljubljana.).
The resulting MRI images can be used for quantitative and qualita-
tive in group-level and/or population-level studies.
2. The neuronorm workflow

2.1. Overview

NeuroNormwas developed to provide a robust and comfortable
tool to prepare structural MRI scans for analysis.NeuroNorm is an
easily accessible package that allows users to preprocess multiple
MRI scans in an automated fashion using minimal user input. Neu-
roNorm, using state-of-the-art essential preprocessing steps, gen-
erates outputs that could be used in a broad spectrum of analysis
such as voxel-based morphometry, volumetric measurements of
regions of interest, deep learning algorithms, and more.

The NeuroNorm preprocessing pipeline is implemented in R,
using the integrated development environment (IDE) RStudio
[22]. Its main functionalities translate as wrapper functions built
from noted neuroimaging R packages such as fslr, ANTs, ex-
trantsr, and RAVEL [23,19,24,25]. We propose an R package that
selects each R package’s best preprocessing algorithms and combi-
nes them to produce a fully automatic and advantageous imple-
mentation. We recommend installing the required packages to
guarantee the correct performance of the NeuroNorm package.

The processing pipeline comprises a set of processes embedded
within dynamic configurations depending on the input data, that
is, the MRI sequences (T1-weighted, T2-weighted, and FLAIR). The
pipeline is made of five sequential steps to correct and standardize
the raw MRI images: imhomogeneity correction, spatial registra-
tion (within subject and to template), skull stripping, brain seg-
mentation and intensity normalization (Fig. 1). NeuroNorm uses
the data structure to identify the available MRI sequences and
adjusts the preprocessing pipeline accordingly. Furthermore, Neu-
roNorm adapts to missing sequences and multiple scans from dif-
ferent patients and sites.
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Inhomogeneity correction, also known as bias field correction, is
a technique to adjust low-frequency undesirable signals that cor-
rupts MRI images because of the inhomogeneities in the MRI scan-
ners’ magnetic fields. A bias field blurs images, thus reducing their
contents and changing the intensity voxel values, so the same tis-
sue has different grey level distribution across the image [26].
Inhomogeneity correction regulates the intensity values voxel-
wise based on a particular tissue and allows further analysis such
as segmentation and classification, which assume spatial invari-
ance of the MRI scans. In the Neuronorm package, the improved
N3 Bias Correction named N4 [27] is implemented.

Spatial registration refers to the process of aligning two images
so that their standard anatomical features overlap and their differ-
ences are emphasized and readily visible [28]. Spatial registration
performs spatial transformations to multiple images to make loca-
tions of voxels have a similar interpretation across the cerebral
anatomical structures. Specific voxels in particular locations can
be only constrained in brains with equivalent spatial domains.

During an MRI session, a particular structural scan is obtained
according to the subject’s brain shape and layout and the scanner’s
particular parameters. Every image must have the same character-
istics in resolution, size, and spatial distribution to conduct a group
or a population-level analysis. This type of registration is called
registration to a template.

Since the aim of Neuronorm is to make comparable MRI images
from different sources and patients, a non-linear symmetric diffeo-
morphic image registration [29] method was used to transform the
scans into a reference template. However, before registering to a
template, the T2-weighted and FLAIR sequences must be translated
(co-registered) to the T1-weighted because population templates
are mainly designed for the T1-weighted sequence. For each sub-
ject, we implemented a rigid linear transformation that allows a
fast and straightforward registration due to the shared dimensions
of the subject’s brain and skull. The literature suggests the brain
atlas of the Montreal Neurological Institute (MNI) due to its
high-spatial-resolution and unbiased properties for registration
to a template. The MNI template is a standard MRI template for
average population [28]. This template defines a representative
brain of the population derived from averaging the dimensions,
size, and brain MRI locations from 152 healthy individuals.

Skull Stripping removes non-brain tissue such as the skull and
neck from anMRI scan of the whole head. Since most projects focus
on the brain tissue, non-brain voxel areas are deleted from the MRI
data. The brain extraction is performed by masking the registered
sequences using the brain mask of the population template.

Brain segmentation involves assigning to the voxels of an MRI
scan a class label value representing the white matter, grey matter,
and cerebrospinal fluid tissues. In Neuronorm, the brain segmenta-
tion via Hidden Markov Random Field (HMRF) [30] is used. This
algorithm is widely adopted in image segmentation due to its clas-
sification nature and its spatial context properties. In brain imag-
ing, HMRF models segment the brain in selected classes, usually
cerebral structures, whilst also correcting spatial intensity varia-
tions. It is a robust and reliable method insensible to noise with
probabilistic volume tissue segmentation.

Intensity normalization ensures comparability across images by
bringing the intensities to a standard scale across patients [28].
MRI intensities are acquired in arbitrary units, making them
incomparable across sites and between subjects. Even MRI scans
acquired with the same protocol can not be compared. This phe-
nomenon affects the performance, prediction, and inference of fur-
ther MRI analysis. Intensity normalization is a crucial step before
performing between-subject or between-time intensity compar-
isons at the voxel level.

Neuronorm uses the Removal of Artificial Voxel Effect by Linear
regression (RAVEL) algorithm [25] to normalize the voxel intensi-



Fig. 1. Preprocessing pipeline implemented in the NeuroNorm package. It adapts the pipeline configuration based on the input MRI sequences. NeuroNorm supports multiple
MRI scans from the three compatible modalities. T2-weighted and FLAIR images are optional for the co-registration step, as well as the covariates for the intensity
normalization process.
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ties. The method removes present unwanted variation after a
white stripe intensity normalization, a robust method based on
parameters obtained from a sample of normal-appearing white
matter. The RAVEL algorithm normalizes the voxel intensity values
by decomposing the intensities’ variation into a biological compo-
nent (clinical covariates) and technical variation (scan effects).
RAVEL algorithm uses covariates to produce the normalized voxel
intensities for each MRI. If no covariates are provided, the RAVEL
algorithm becomes a White Stripe technique[31]. The White Stripe
normalization method normalizes the intensity of the voxels
accounting for the natural balance of the brain tissues. White stripe
ensures preserving brain abnormalities or damaged tissue that
would be obscured with traditional normalization methods.
2.2. Comparison to alternative preprocessing tools

Neuronorm, as an R package, offers distinct advantages over its
counterparts due to its fully automated pipeline, eliminating the
need for users to manually apply each preprocessing step sequen-
tially. By integrating a comprehensive set of preprocessing algo-
rithms into a unified and automated process, Neuronorm

streamlines the preprocessing workflow and reduces the burden
on researchers and clinicians. Instead of navigating through com-
plex manual procedures such as those in FreeSurfer, FSL and
Insight Toolkit, users can simply provide the input data and cus-
tomize the algorithms according to their specific preprocessing
requirements. It as well alleviates time-consuming and error-
prone challenges associated to the manual execution of prepro-
cessing steps. Another advantage of Neuronorm compared to exist-
ing preprocessing tool software, is that it guarantees
reproducibility and reduces the data variability by automating
the application of preprocessing algorithms. In contrast, existing
preprocessing software tools such as FreeSurfer and FSL, although
offering semi-automatic pipelines, either require extensive batch
scripting knowledge to handle large numbers of MRIs or rely on
outdated preprocessing algorithms. Furthermore, Neuronorm’s
automation facilitates scalability, enabling efficient processing of
large datasets. With the ever-increasing availability of neuroimag-
ing data frommulticenter studies and open-access repositories, the
ability to preprocess a considerable number of images rapidly
becomes paramount. Neuronorm’s automated pipeline empowers
researchers to tackle this demanding task effectively, saving time
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and effort while ensuring the quality and consistency of prepro-
cessing across diverse datasets.

The field of neuroimaging research heavily relies on accurate
preprocessing of MRI data to ensure reliable and meaningful
results of brain imaging analysis. In this context, the selection of
appropriate software tools plays a crucial role. Neuronorm, specif-
ically designed for preprocessing multiple MRI datasets coming
from different patients, sites and studies, offers a variety of state-
of-the-art methods that differentiate it from other widely used
brain imaging preprocessing software tools, including FreeSurfer,
FSL, ANTs, and Insight Toolkit (Table 1). While Neuronorm shares
and borrows preprocessing algorithms from well-known neu-
roimaging preprocessing tools, its success lies in integrating these
algorithms into a fully automated pipeline, minimizing the need
for human intervention.

Neuronorm provides both the N3 and improved N4 Bias correc-
tion algorithms for inhomogeneity correction, which none of the
alternative tools, besides the ANTs software, offer comprehen-
sively. Inhomogeneity correction plays a crucial role in eliminating
intensity variations resulting from non-uniformities in MRI signals
during data acquisition [26]. By incorporating both the N3 and N4
algorithms, Neuronorm allows researchers to choose the most
appropriate correction method based on specific dataset character-
istics, such as the level of noise present in the MRI signals.

Spatial registration, a critical step in the preprocessing of neu-
roimaging data, is also effectively supported by Neuronorm. Our
software package offers both linear (Affine) and nonlinear (Sym-
metric Diffeomorphic Image Registration - SyN) transformation
algorithms, providing users with the ability to achieve accurate
normalization and anatomical alignment of brain images. While
alternative tools also offer linear registration capabilities, the
inclusion of a non-linear transformation algorithm within Neu-

ronorm significantly enhances its capacity for advanced and pre-
cise spatial normalization. This feature proves particularly
advantageous when investigating anatomical variations across
subjects or time points, as it facilitates reliable inter-subject and
longitudinal analyses [28].

Neuronorm includes as well brain extraction algorithms, align-
ing with the functionality of the alternative tools, to ensures that
subsequent analysis focus solely on brain structures. One notable
aspect of Neuronorm is its integration of the FMRIB’s Automated
Segmentation Tool (FAST) for brain segmentation. Our package



Table 1
Comparison of state-of-the-art preprocessing tasks for various brain imaging preprocessing tools and Neuronorm.

Task Algorithm Alternative preprocessing tools Neuronorm

FreeSurfer FSL ANTs Insight Toolkit

Imhomogeneity
Correction

N3 X U U X U

N4 X X U U U

Spatial
Registration

Affine U U U U U

SyN U U U X U

Skull Stripping Brain extraction U U U U U

Brain
Segmentation

FAST
Segmentation Tool

X U X X U

X U X X U

Intensity
Normalization

RAVEL X X X X U

White Strip X X X X U

Fig. 2. Recommended folder structure.

Table 2
Suggested structure of covariates. In this case, covariates are sex and age. More
variables can be included if available.

Patient Age Sex

1 58 F
2 65 M
� � � � � � � � �
N 55 F
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borrows the FAST brain segmentation algorithm from the only
package with its implementation, FSL. The FAST algorithm is an
automatic robust and reliable segmentation method, compared
to most finite mixture model-based methods such as Atropos
Multivar-EM Segmentation and K-Means clustering available in
ANTs and Insight Toolkit, respectively, as it is less sensitive to noise
and skull border effects [30].

Intensity normalization algorithms play a pivotal role to analyse
MRI data originating from different sites, scanners, patients and
studies. In this regard, Neuronorm excels in being the only tool
offering both the RAVEL and White Strip methods. The integration
of these methods within Neuronorm’s preprocessing pipeline
enables researchers to address intensity variations stemming from
various acquisition protocols or disease-related effects. By effec-
tively normalizing intensities across images, Neuronorm ensures
improved intra- and inter-imaging comparability while mitigating
potential confounding factors that could compromise the accuracy
of subsequent analyses. This capability proves essential in enhanc-
ing the reliability and validity of neuroimaging investigations deal-
ing with multi-site or longitudinal MRI data.

3. Implementation and functionalities

3.1. Data structure

3.1.1. MRI scans
MRI scans must follow a specific data structure, so NeuroNorm

will be able to identify their sequences correctly. We recommend a
folder structure in which each patient represents a folder contain-
ing their corresponding MRI scans. Furthermore, the name of the
MRI scan file must refer to the description of the sequence, that
is, ‘‘T1”, ‘‘T2” or ‘‘FLAIR”. Fig. 2 shows an example of the required
data structure. The MRI scan files must follow the NIfTI (Neu-
roimaging Informatics Technology Initiative) data format.

3.1.2. Covariates
Most of the available MRI datasets will provide basic informa-

tion about the scan patients, e.g., age, sex, disease type. RAVEL
technique implemented in NeuroNorm uses this information as
covariates to correct unwanted variation and normalize the voxel
intensities. We suggest including covariates as long as these are
available for all the MRI scans to preprocess for RAVEL to work cor-
rectly. Otherwise, the WhiteStripe technique will be utilized.

Table 2 displays an example of the covariates structure. The for-
mat can be an external CSV or a native R data frame. The number of
rows of covariates must match the number of patients.

3.2. Data loading

The NeuroNorm preprocessing pipeline only requires two
parameters. The first one refers to the folder containing the data
4

(see data structure). The second parameter corresponds to the
covariates of interest needed to perform the RAVEL intensity
normalization.

We tested NeuroNorm with MRI data of 330 patients from dif-
ferent sources. However, the dissemination and use of such infor-
mation is bounded by the sources own policies. We provide
sample data of four patients including MRI images, covariates,
and folder structure in a helper package called NeuroData for a
reproducible example.

The sample data can be loaded with the following commands.
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# Install and load package

install.packages("Neuronorm")

library(neuronorm)

# Get general folder

folder <- system.file("extdata", package =

"neurodata")

# Get covariates

covariates <- system.file("covariates.txt",

package = "neurodata")

# Read covariates information

clinical_info <- read.csv(file = covariates, sep =

’;’)
3.3. Preprocessing

The function preprocess_patients() takes as input the
folder containing the raw images and the covariates, applies the
preprocessing pipeline to the input images, and creates prepro-
cessed images for each process. First, the function checks for the
MRI scan modalities and informs the user if any is missing. Since
NeuroNorm adapts to the provided information, it is not necessary
to have all the supported MRI sequences. However, the T1-
weighted sequence is mandatory.

# Preprocess MRI scans

paths_preprocess_patients <- preprocess_patients
(folder, clinical_info)

The function also displays the folder currently in prepossessing
and the steps involved. The messages will allow the user to track
the function progress and assess its performance.

The RAVEL algorithm (intensity normalization) is applied after
executing the other preprocessing steps in all patients. RAVEL
requires every normalized, co-registered, skull stripped image as
well as the covariates. If the latter is not provided, the White Stripe
normalization method will be performed instead. This is the last
step of the NeuroNorm preprocessing pipeline.

After executing the preprocess_patients() function, pre-
processed images and a list of paths are created. The preprocessed
images are located in the patient’s folder. The list contains the
images’ relative paths for each preprocessing step to be loaded
directly into R.

# Accesing the MRI preprocessed scan for patient

one: RAVEL normalized.

paths_preprocess_patients$patient01$ravel
# Accesing the MRI preprocessed scan for patient

two: skull stripped.

paths_preprocess_patients$patient02$stripped

To visualize the preprocessed images, the orthographic()

function from the oro.nifti package can be used. For comparison
purposes, we also include the visualization of the same MRI scan
without preprocessing (Fig. 3b).

library(’oro.nifti’)

# visualize a fully preprocessed MRI scan for a

patient.

preprocessed_img <- readNIfTI(file.path
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(paths_preprocess_patients$patient01$ravel))
orthographic(preprocessed_img)
# original MRI scan for the same patient

raw_img <- readNIfTI(file.path("/

MRI_Scans/patient01/patient01_T1WKS.nii.gz"))
orthographic(raw_img)

Fig. 3 shows a raw MRI scan against a preprocessed one. In the
processed MRI scan, the voxel intensities and locations were cor-
rected. Also, subject-specific and scanner-specific effects were
removed. The processed scan shares the spatial architecture and
dimensions of the Montreal Neurological Institute (MNI) template
brain atlas. This noise-free MRI scan can be used in further analy-
sis, e.g., classification analysis.

Some NeuroNorm capabilities also work outside the prepro-

cess_patients() function. For example, the function prepro-

cess_modalities() preprocesses MRI scan sequences for just
one patient. Furthermore, this function admits the user’s preferred
atlas template, inhomogeneity correction (N3 or N4 correction),
and registering transformation (see supported transformations in
the antsRegistration() function of the ANTs package). In this
scenario, the intensity normalization algorithm is not applied since
it requires multiple patients to be performed.

# Folder of the patient

patient_folder <- file.path(folder,"patient01")

## Getting the paths of the MRI scan sequences for

one patient

## the NeuroNorm built-in function

load_mri_patient() can be used for this.

sequences <- load_mri_patient(patient_folder)
## Getting preferred atlas template and template

mask

## Using the MNI152 template available in the

MNITemplate package

library(MNITemplate)

atlas <- getMNIPath()

atlas_mask <- readMNI("Brain_Mask")
## Preprocessing the patient’s sequences

patient_preprocessed_mri <-
preprocess_modalities(mri.patient = sequences,

folder.patient = patient_folder, modalities = c(’

T1’,’T2’,’FLAIR’), atlas = atlas, mask

= atlas_mask, inhomogeneity = ’N4’,

transformation = ’SyN’)

The RAVEL intensity normalization function can also be used
alone. This is particularly useful for normalizing intensities of T2-
weighted and FLAIR sequences when only a few of them are
provided.

Only 3 out of 4 patients have a T2-weighted sequence in the
sample data. We will subset those patients’ covariates and the pre-
processed image paths to execute the RAVEL algorithm.

## Defining the RAVEL output files for the patients

## with a T2-weighted sequence (patient 1,2 and 4)

patients <- c(1,2,4)

output_files <- lapply(patients, function(x)

{file.path(folder, paste0("patient0",x),
"T2_ravel.nii.gz")})

## Getting the files of the preprocessed images

(continued on next page)



Fig. 3. Sagittal, axial, and coronal slice views of preprocessed and raw T1-weighted scan of the same patient. Significant changes can be appreciated from (b) to (a). The MRI
scan has been cleaned and standardized, and it is ready for further analysis.
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(without intensity normalization)

## and the CSF masks computed by the preprocessing.

csf_paths <- lapply(paths_preprocess_patients
[patients], function(x)x$csf_mask)

masked_paths <- lapply(paths_preprocess_patients
[patients], function(x)x$stripped[2])

## Subseting covariates info

cov_pat <- clinical_info[clinical_info$patient ##

Applying RAVEL to T2 sequences

image_normalization_ravel(masked.paths
= masked_paths, csf.paths = csf_paths,
ravel.paths = output_files, demographics
= cov_pat, brain.mask = atlas_mask,
patients.folder = folder, modality = "T2")
4. Validation

4.1. Data sets

NeuroNorm has been evaluated using the T 1-weighted, T2-
weighted, and FLAIR MRI scans from three different studies. The
first study corresponds to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The data set available for testing our pipeline
comprises a subset from the ADNI 3 cohort of the ADNI study.
The data set consists of MRI scans from 60 Alzheimer’s, 30 Mild
6

cognitive impartment, and 75 healthy subjects (normal controls).
The data also includes patient-specific covariates such as sex and
age. The second dataset was obtained from the Parkinson’s Pro-
gression Markers Initiative (PPMI) study [32]. The selected dataset
is conformed by 60 Parkinson’s patients and 75 Healthy subjects’
MRI scans and clinical data. The clinical data refers to the sex
and age of the patients. The third data source is the University
Medical Center Ljubljana (UMCL) which disseminated a public
MS dataset of 30 Multiple Sclerosis patients, including MR images
and biological data [33]. The publicly available dataset was created
to encourage further use and research in MS lesions segmentation.
We used the entire dataset from 30 patients comprising 3D T1-
weighted scans and biological data such as sex and age of the study
participants.

4.2. Results

We preprocessed 330 T1-weighted, 300 T2-weighted and 30
FLAIR images from 330 subjects by using the preprocess_pa-
tients() function in the NeuroNorm package. We used a com-
puter with 8 GB of RAM and Intel Core i5. The average
computational time of preprocessing a patient’s MRI data took 6
to 8 min, depending on the patient’s available MRI sequences.

Fig. 4 shows preprocessed T1-weighted scans of five subjects.
The raw images came from three different sources with specific
parameters on image dimensions, voxel intensity ranges, patients
characteristics, acquisition protocols and scanner types. It is evi-
dent how the preprocessed images can be constrained each other



Fig. 4. Sagittal, coronal, and axial slice views of preprocessed T1-weighted scans of a healthy individual and four patients with distinct neurodegenerative diseases:
Alzheimer’s disease, Mild cognitive impairment, Parkinson’s disease, and Multiple Sclerosis.
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because they shared the same geometrical space and intensity
range. Moreover, biological markers associated to neurodegenera-
tive diseases such as the medial temporal lobe atrophy in Alzhei-
mer’s and Mild cognitive impairment, the substantia nigra
regions in Parkinson’s and, the white matter lesions in Multiple
Sclerosis are preserved. This occurs because of the preprocessing
algorithms selected for the NeuroNorm preprocessing pipeline.
NeuroNorm normalized and denoised the MRI scans without com-
promising biological information, thus ensuring comparability
between subjects.

The preprocessed MRI scans will increase the sensitivity of any
analysis and certify the validity of any model that uses them. Neu-
roNorm outcome data can be employed in further analysis, for
instance, disease classification analysis, region volume estimation
or feature extraction. NeuroNorm was successfully applied to pre-
process MRI images in order to detect and classified neurodegener-
ative diseases [34].
5. Discussion and conclusions

NeuroNorm is a structural MRI preprocessing pipeline charac-
terized by its robustness, manipulability and flexibility. It also pro-
duces highly specified and coherent results. We demonstrated how
using state-of-the-art preprocessing methods, and a flexible con-
figuration allows the workflow to adapt to multiple inputs. It auto-
mates the adaptation to the input information and assures the
quality of results. Our workflow integrates and simplifies well-
known neuroimaging software packages. NeuroNorm pipeline is
easy to use for neurologists, physicians, and medical researchers
with essential programming experience. We showed how our
workflow requires minimal user inputs and interaction and pro-
duces valuable MRI information. We also validated the robustness
of our pipeline on numerous MRI data from datasets associated
with different studies. By visual inspection, we found that our
results exhibit high-quality standards and preserve patients’ bio-
logical characteristics.
7

NeuroNorm, as an integrated R package, distinguishes itself
from individual software tools such as FreeSurfer, FSL, ANTs, and
Insight Toolkit by offering a more comprehensive and user-
friendly approach to neuroimaging preprocessing. While each of
these tools focuses on specific aspects of preprocessing, Neuro-
Norm consolidates and harmonizes their functionalities into a uni-
fied pipeline. This integration not only improves the efficiency and
usability of the preprocessing workflow, but also expands the
range of capabilities available to researchers. NeuroNorm goes
beyond simply incorporating the core preprocessing algorithms
from these established software tools. It also introduces additional
features and enhancements that cater to the challenges posed by
large datasets obtained from diverse sources. By providing a holis-
tic solution that combines the strengths of multiple tools, Neuro-
Norm offers a valuable resource for researchers seeking a
comprehensive and efficient preprocessing framework.

One limitation of this work relates to the algorithms and meth-
ods implemented in the pipeline. Although many alternatives for
each step exist, they are used in precise settings and analysis and
are rare in neuroimaging research. NeuroNorm adopts forefront
techniques to facilitate data integration and further analysis. Neu-
roNorm pipeline is also restricted to the Neuroimaging Informatics
Technology Initiative (NIfTI) since it is the preeminent format in
neuroimaging analysis studies. Likewise, our workflow does not
support MRI data from rodents and nonhuman primates. Neu-
ronorm only preprocesses MRI scans from humans. Future work
will focus on integrating other preprocessing techniques and
formats.

The interpretation of MRI outputs processed by NeuroNorm

requires careful consideration due to the inherent limitations of
the methods incorporated in its pipeline. An important aspect to
address is the choice of template for spatial registration, as an
inappropriate selection can introduce distortions in anatomical
structures, thereby hindering meaningful comparisons between
subjects or studies [35]. Therefore, it is crucial to carefully evaluate
and select a template that accurately represents the population
under investigation, ensuring reliable anatomical alignment across
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MRI scans. While NeuroNorm defaults to the MNI template, users
have the flexibility to choose an alternative template that aligns
with the specific requirements of their study. Another limitation
arises from the HMRF segmentation method deployed in Neuro-

Norm. In cases where low-resolution MRI scans are provided, the
HMRF algorithm may encounter challenges in identifying appro-
priate thresholds for classifying gray matter and white matter,
potentially resulting in misclassification [30]. To address this, we
recommend researchers visually inspect the segmentation outputs
to assess their consistency and consider employing alternative val-
idation methods if deemed necessary. Furthermore, attention must
be given to the intensity normalization step in NeuroNorm. The
RAVEL method utilized in this process relies on the accuracy of
the tissue segmentation results. In cases where the segmentation
yields incorrect results, the RAVEL algorithm may remove relevant
biological signals or associate control regions with the outcome
under investigation [16]. To mitigate this limitation, researchers
are advised to exercise caution and thoroughly assess the segmen-
tation results to ensure the preservation of meaningful informa-
tion. We suggest users verify the preprocessed MRIs for a
random selection of patients from each MRI dataset, enabling an
evaluation of the segmentation quality and aiding in the identifica-
tion of potential inconsistencies or errors.

The NeuroNorm R package is available at CRANhttps://cran.
rstudio.com/web/packages/neuronorm or in Neuronorm GitHub
repository. Considering the increasing studies comprising struc-
tural MRI data [10], NeuroNorm aims to better support structural
MRI practitioners in performing reproducible analyses with a
high-quality, adaptive, and practical preprocessing tool.
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