380 research outputs found

    Synthesis and characterization of proton conducting oxyanion doped Ba2Sc2O5

    Get PDF
    In this paper we report the successful synthesis of the cubic oxyanion containing perovskites, Ba2Sc2-xPxO5+x (x=0.4, 0.5), with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. Conductivity measurements indicate a p-type contribution to the conductivity in oxidizing conditions at elevated temperatures, with evidence for proton conduction in wet atmospheres. For the latter bulk conductivities of 5.9 x 10-3 and 1.3 x 10-3 Scm-1 at 500○C were obtained for x=0.4 and 0.5 respectively, comparable to other perovskite proton conductors, while the stability towards CO2 containing atmospheres was improved compared to BaCeO3 based systems.\ud Related Si doped systems have also been prepared, although in this case small Ba2SiO4 impurities are observed. We also provide evidence to suggest that “undoped” Ba2Sc2O5 contains carbonate groups, which accounts for its thermal instability

    The Oedipal Paradigm in Group Development

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68383/2/10.1177_104649647300400302.pd

    Effective action and density functional theory

    Get PDF
    The effective action for the charge density and the photon field is proposed as a generalization of the density functional. A simple definition is given for the density functional, as the functional Legendre transform of the generator functional of connected Green functions for the density and the photon field, offering systematic approximation schemes. The leading order of the perturbation expansion reproduces the Hartree-Fock equation. A renormalization group motivated method is introduced to turn on the Coulomb interaction gradually and to find corrections to the Hartree-Fock and the Kohn-Sham schemes.Comment: New references and a numerical algorithm added, to appear in Phys. Rev. B. 30 pages, no figure

    The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds

    Get PDF
    Fröhlich J, Wachsmuth I. The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds. In: Shumaker R, ed. Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. Lecture Notes in Computer Science. Vol 8021. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 159-168.In order to make a step further towards understanding the impact of multi-modal stimuli in Virtual Reality we conducted a user study with 80 participants performing tasks in a virtual pit environment. Participants were divided into four groups, each presented a different combination of multi-sensory stimuli. Those included real-time 3D graphics, audio stimuli (ambient, static and event sounds), and haptics consisting of wind and tactile feedback when touching objects. A presence questionnaire was used to evaluate subjectively reported presence on the one hand, and on the other physiological sensors were used to measure heart rate and skin conductance as an objective measure. Results strongly indicate that an increase of modalities does not automatically result in an increase of presence

    Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method

    Full text link
    A structural model of hydrogenated amorphous silicon containing an isolated dangling bond is used to investigate the effects of electron interactions on the electronic level splittings, localization of charge and spin, and fluctuations in charge and spin. These properties are calculated with a recently developed density-matrix correlation-energy functional applied to a generalized Anderson Hamiltonian, consisting of tight-binding one-electron terms parametrizing hydrogenated amorphous silicon plus a local interaction term. The energy level splittings approach an asymptotic value for large values of the electron-interaction parameter U, and for physically relevant values of U are in the range 0.3-0.5 eV. The electron spin is highly localized on the central orbital of the dangling bond while the charge is spread over a larger region surrounding the dangling bond site. These results are consistent with known experimental data and previous density-functional calculations. The spin fluctuations are quite different from those obtained with unrestricted Hartree-Fock theory.Comment: 6 pages, 6 figures, 1 tabl

    Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations are commonly found in malignant melanomas but rare in melanocytic nevi. To assess its potential diagnostic utility for the distinction of melanoma from nevus, we determined the TERT promoter mutation status of 86 primary melanomas, 72 melanocytic nevi, and 40 diagnostically problematic melanocytic proliferations. Of the 86 melanomas, 67 (77.9%) were TERT-positive, defined as harboring a hotspot TERT promoter mutation at positions -124C>T, -124_125CC>TT, -138_139CC>TT, or -146C>T. Of the 72 nevi, only 1 (1.4%) was TERT-positive. Of the 40 diagnostically uncertain melanocytic proliferations, 2 (5.0%) were TERT-positive. TERT positivity as a test for melanoma versus nevus had an accuracy of 87.3% [95% confidence interval (CI), 81.1-92.1], a sensitivity of 77.9% (95% CI, 68.9-85.4), a specificity of 98.6% (95% CI, 95.8-100), a positive predictive value of 98.5% (95% CI, 95.6-100), and a negative predictive value of 78.9% (95% CI, 72.6-85.4). Our results indicate that hotspot TERT promoter mutation status may be a useful ancillary parameter for the diagnosis of melanoma. In particular, the high specificity of these mutations for melanoma indicates the presence of a TERT promoter mutation in a melanocytic neoplasm associated with diagnostic controversy, or uncertainty should increase concern for a melanoma

    On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)

    Get PDF
    In October 1924, the Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Van Vleck combined advanced techniques of classical mechanics with Bohr's correspondence principle and Einstein's quantum theory of radiation to find quantum analogues of classical expressions for the emission, absorption, and dispersion of radiation. For modern readers Van Vleck's paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg's "Umdeutung" paper. This makes Van Vleck's paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself.Comment: 82 page

    Gutzwiller-Correlated Wave Functions: Application to Ferromagnetic Nickel

    Full text link
    Ferromagnetic Nickel is the most celebrated iron group metal with pronounced discrepancies between the experimental electronic properties and predictions of density functional theories. In this work, we show in detail that the recently developed multi-band Gutzwiller theory provides a very good description of the quasi-particle band structure of nickel. We obtain the correct exchange splittings and we reproduce the experimental Fermi-surface topology. The correct (111)-direction of the magnetic easy axis and the right order of magnitude of the magnetic anisotropy are found. Our theory also reproduces the experimentally observed change of the Fermi-surface topology when the magnetic moment is oriented along the (001)-axis. In addition to the numerical study, we give an analytical derivation for a much larger class of variational wave-functions than in previous investigations. In particular, we cover cases of superconductivity in multi-band lattice systems.Comment: 35 pages, 3 figure

    Identification of a Robust Methylation Classifier for Cutaneous Melanoma Diagnosis

    Get PDF
    Early diagnosis improves melanoma survival, yet the histopathological diagnosis of cutaneous primary melanoma can be challenging, even for expert dermatopathologists. Analysis of epigenetic alterations, such as DNA methylation, that occur in melanoma can aid in its early diagnosis. Using a genome-wide methylation screening, we assessed CpG methylation in a diverse set of 89 primary invasive melanomas, 73 nevi, and 41 melanocytic proliferations of uncertain malignant potential, classified based on interobserver review by dermatopathologists. Melanomas and nevi were split into training and validation sets. Predictive modeling in the training set using ElasticNet identified a 40-CpG classifier distinguishing 60 melanomas from 48 nevi. High diagnostic accuracy (area under the receiver operator characteristic curve = 0.996, sensitivity = 96.6%, and specificity = 100.0%)was independently confirmed in the validation set (29 melanomas, 25 nevi)and other published sample sets. The 40-CpG melanoma classifier included homeobox transcription factors and genes with roles in stem cell pluripotency or the nervous system. Application of the 40-CpG melanoma classifier to the diagnostically uncertain samples assigned melanoma or nevus status, potentially offering a diagnostic tool to assist dermatopathologists. In summary, the robust, accurate 40-CpG melanoma classifier offers a promising assay for improving primary melanoma diagnosis
    • …
    corecore