955 research outputs found

    Inhibition of Bacterial Growth and Biofilm Production by Metabolites from Hypericum spp

    Get PDF
    Biofilm embedded bacterial pathogens such as Staphylococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii are difficult to eradicate and are major sources of bacterial infections. New drugs are needed to combat these pathogens. Hypericum is a plant genus that contains species known to have antimicrobial properties. However, the specific metabolites responsible for the antimicrobial properties are not entirely known, nor have most compounds been tested as inhibitors of biofilm development. The investigation presented here tested seven secondary metabolites isolated from the species Hypericum densiflorum, Hypericum ellipticum, Hypericum prolificum and Hypericum punctatum as inhibitors of bacterial growth and biofilm production. Assays were conducted against Staphylococcus epidermidis, Staphylococcus aureus, clinical methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. Five of the seven metabolites demonstrated growth inhibition against the Gram-positive bacteria with minimum inhibitory concentrations (MIC) ranging from 1.95 µg/mL to 7.81 µg/mL. Four of the metabolites inhibited biofilm production by certain Gram-positive strains at sub-MIC concentrations

    Fannie Hardy Eckstorm Correspondence

    Get PDF
    Entries include a typed letter from the Office of the Director of the Field Museum of Natural History in Chicago, a request from the Maine State Librarian for help writing a paper, typed and handwritten correspondence between Eckstorm and the Maine State Library some on personal stationery, a typed description of a folk-song collection on the way to the publisher, a call for traditional versions of songs and their airs, Eckstorm\u27s typed biographical sketches of Smyth and Barry, a newspaper review clipping, and a publisher advertisemen

    The potential of dental calculus as a novel source of biological isotopic data

    Get PDF
    Stable isotope analysis has become an essential tool in investigations of ancient migration and paleodietary reconstruction. Because the biogeochemistry of bone collagen and apatite is well known, current methods rely almost exclusively on analyses of bones and teeth; however, dental calculus represents a potentially additional biological source of isotopic data from ancient skeletons. Dental calculus is a mineralized bacterial biofilm that forms on the surfaces of teeth. Sampling dental calculus does not damage the dentition and thus can be used in cases where it is not possible to perform destructive analyses of conventional mineralized tissues. Like bone and dentine, dental calculus contains both inorganic and organic components, allowing measurement of C, N, O, H, and Sr isotopes. Additionally, dental calculus forms as serial, non-remodeling laminar accretions on the tooth surface, opening up the possibility of analyzing discrete time points during the lifetime of an individual. However, as a microbial biofilm and not a human tissue, the biochemistry of dental calculus is complex, containing multiple calcium phosphate mineral phases, organic and inorganic food remains, hundreds of human and bacterial proteins, and diverse biomolecules from thousands of endogenous bacterial taxa. Isotopic investigation of dental calculus is still in its infancy, and many questions remain regarding its formation and processes of diagenesis. This chapter (1) reviews the unique advantages presented by dental calculus as a novel source of biological isotopic data, (2) critically evaluates published isotopic studies of dental calculus, and (3) explores the current challenges of dental calculus stable isotope analysis through a case study of an Ancient Puebloan Basketmaker II population from the American Southwest.Bioarchaeolog

    Three Generations in Type I Compactifications

    Get PDF
    Generalizing the recent work on three-family Type I compactifications, we classify perturbative Type I vacua obtained via compactifying on the T^6/Z_2 X Z_2 X Z_3 orbifold with all possible Wilson lines. In particular, we concentrate on models with gauge groups containing the Standard Model gauge group SU(3)_c X SU(2)_w X U(1)_Y as a subgroup. All of the vacua we obtain contain D5-branes and are non-perturbative from the heterotic viewpoint. The models we discuss have three-chiral families. We study some of their phenomenological properties, and point out non-trivial problems arising in these models in the phenomenological context.Comment: 16 pages, revtex, minor misprints correcte

    Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission

    Full text link
    The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA's first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with IR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg), power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.Comment: 18 pages, 15 figures, 4 tables; To appear in a special volume of Space Science Reviews on the New Horizons missio

    Dental calculus is not equivalent to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals from the Medieval site of El Raval (Alicante, Spain).

    Get PDF
    Palaeodietary reconstruction using the carbon and nitrogen isotope values of bone and dentine collagen is a well-established method and the biochemical processes involved are well known. Researchers have recently explored using bulk samples of dental calculus as a substitute for bone and dentine collagen in dietary analyses, because calculus can be sampled without causing damage to the teeth, and may be useful in situations where more destructive analyses are not possible, or where collagen is poorly preserved. Several questions remain about the use of bulk calculus as a source of carbon and nitrogen isotope data, however. It is not yet clear how much of an individual¿s life span dental calculus represents, what portions of the diet it records, and how diagenesis effects the carbon and nitrogen isotope values of this material. Most importantly, there have been no comparative studies of collagen and calculus isotope values, which are necessary to establish the value of bulk calculus as a source of accurate isotope values. Here we report the comparison of carbon and nitrogen stable isotope analyses of bulk calculus to those from bone and dentine collagen. These analyses have been performed on individuals from the El Raval Mudéjar Medieval Cemetery (Eastern Iberia, 15th century A.D.). Although calculus isotope values may be broadly similar to expected values at the population level, we report here no correlation between collagen and bulk dental calculus values at the individual level. As a result, we recommend that carbon and nitrogen analysis on bulk dental calculus should only be used as a last resource archaeological dietary marker, if at all

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Postmenopausal Chinese-Singaporean Women Have a Higher Ratio of Visceral to Subcutaneous Adipose Tissue Volume than Caucasian Women of the Same Age and BMI.

    Get PDF
    Central fat accumulation is a significant determinant of cardio-metabolic health risk, known to differ between ethnically distinct human populations. Despite evidence for preferential central adiposity in Asian populations, the proportional distribution between the subcutaneous and visceral compartments in Chinese postmenopausal women has not been thoroughly investigated. For this analysis, volumetrically quantified subcutaneous and visceral adipose tissue (SAT, VAT) in the pelvic and abdominal regions of postmenopausal Asian (Chinese-Singaporean) and Caucasian (German) women matched for age and Body Mass Index (BMI) was undertaken, to examine such differences between the two groups. Volumes were calculated from segmentations of magnetic resonance imaging datasets of the abdomen and pelvis. Despite SAT, VAT, and the corresponding total adipose tissue (TAT) being similar between the groups, VAT/SAT and VAT/TAT were higher in the Asian group (by 24.5% and 18.2%, respectively, each p = 0.02). Further, VAT/SAT and VAT/TAT were positively correlated with BMI in the Caucasian group only (p = 0.02 and p = 0.01, respectively). We concluded that VAT is proportionally higher in the non-obese Asian women, compared to the Caucasian women of matched age and BMI. This conclusion is in agreement with existing literature showing higher abdominal adiposity in Asian populations. Additionally, in the Asian group, BMI did not correlate with visceral adiposity on a significant level. Further analysis is required to examine the extent to which this increased VAT may impact cardio-metabolic health. There is, however, a need to emphasize healthy lifestyle behaviors in non-obese post-menopausal women of Chinese ancestry
    corecore