278 research outputs found

    Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order

    Get PDF
    We study both analytically and numerically phonon transmission fluctuations and localization in partially ordered superlattices with correlations among neighboring layers. In order to generate a sequence of layers with a varying degree of order we employ a model proposed by Hendricks and Teller as well as partially ordered versions of deterministic aperiodic superlattices. By changing a parameter measuring the correlation among adjacent layers, the Hendricks- Teller superlattice exhibits a transition from periodic ordering, with alterna- ting layers, to the phase separated opposite limit; including many intermediate arrangements and the completely random case. In the partially ordered versions of deterministic superlattices, there is short-range order (among any NN conse- cutive layers) and long range disorder, as in the N-state Markov chains. The average and fluctuations in the transmission, the backscattering rate, and the localization length in these multilayered systems are calculated based on the superlattice structure factors we derive analytically. The standard deviation of the transmission versus the average transmission lies on a {\it universal\/} curve irrespective of the specific type of disorder of the SL. We illustrate these general results by applying them to several GaAs-AlAs superlattices for the proposed experimental observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte

    Approximate Particle Number Projection for Rotating Nuclei

    Get PDF
    Pairing correlations in rotating nuclei are discussed within the Lipkin-Nogami method. The accuracy of the method is tested for the Krumlinde-Szyma\'nski R(5) model. The results of calculations are compared with those obtained from the standard mean field theory and particle-number projection method, and with exact solutions.Comment: 15 pages, 6 figures available on request, REVTEX3.

    Perceptual Pluralism

    Get PDF
    Perceptual systems respond to proximal stimuli by forming mental representations of distal stimuli. A central goal for the philosophy of perception is to characterize the representations delivered by perceptual systems. It may be that all perceptual representations are in some way proprietarily perceptual and differ from the representational format of thought (Dretske 1981; Carey 2009; Burge 2010; Block ms.). Or it may instead be that perception and cognition always trade in the same code (Prinz 2002; Pylyshyn 2003). This paper rejects both approaches in favor of perceptual pluralism, the thesis that perception delivers a multiplicity of representational formats, some proprietary and some shared with cognition. The argument for perceptual pluralism marshals a wide array of empirical evidence in favor of iconic (i.e., image-like, analog) representations in perception as well as discursive (i.e., language-like, digital) perceptual object representations

    Influence of auto-organization and fluctuation effects on the kinetics of a monomer-monomer catalytic scheme

    Full text link
    We study analytically kinetics of an elementary bimolecular reaction scheme of the Langmuir-Hinshelwood type taking place on a d-dimensional catalytic substrate. We propose a general approach which takes into account explicitly the influence of spatial correlations on the time evolution of particles mean densities and allows for the analytical analysis. In terms of this approach we recover some of known results concerning the time evolution of particles mean densities and establish several new ones.Comment: Latex, 25 pages, one figure, submitted to J. Chem. Phy

    Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study

    Get PDF
    A study of rotational properties of the ground superdeformed bands in \Hg{0}, \Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint IPN-TH 93-6

    Gossip in organisations: Contexts, consequences and controversies

    Get PDF
    This article examines the key themes surrounding gossip including its contexts, the various outcomes (positive and negative) of gossip as well as a selection of challenges and controversies. The challenges which are highlighted revolve around definitional issues, methodological approaches, and ethical considerations. Our analysis suggests that the characteristics and features of gossip lend itself to a process-oriented approach whereby the beginning and, particularly, end points of gossip are not always easily identified. Gossip about a subject or person can temporarily disappear only for it to re-surface at some later stage. In addition, questions pertaining to the effects of gossip and ethical-based arguments depend on the nature of the relationships within the gossip triad (gossiper, listener/respondent and target)

    A two-site flexible clamp mechanism for RET-GDNF-GFRα1 assembly reveals both conformational adaptation and strict geometric spacing

    Get PDF
    RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RETECD-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RETECD-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Genome‐wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk

    Get PDF
    Genome‐wide association studies (GWAS) have identified 45 susceptibility loci associated with lung cancer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant genetic polymorphisms in the human genome. INDELs are highly associated with multiple human diseases, including lung cancer. However, limited studies with large‐scale samples have been available to systematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large‐scale meta‐analysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to further explore the potential function of lung cancer risk INDELs. Conditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci were identified in genome‐wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, P = 9.10 × 10−8; 4q28.2: rs58404727, Deletion, OR = 1.19, P = 5.25 × 10−7; 12p13.31: rs71450133, Deletion, OR = 1.09, P = 8.83 × 10−7; and 14q22.3: rs34057993, Deletion, OR = 0.90, P = 7.64 × 10−8). The eQTL analysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by regulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, the INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be potentially functional genetic variants for lung cancer risk. Further functional experiments are needed to better understand INDEL mechanisms in carcinogenesis
    • 

    corecore