41 research outputs found

    Finite Temperature Wave-Function Renormalization, A Comparative Analysis

    Get PDF
    We compare two competing theories regarding finite temperature wave-function corrections for the process H→e+e−H \to e^+e^- and for n+ν→p+e−n+\nu \to p+e^- and related processes of interest for primordial nucleosynthesis. Although the two methods are distinct (as shown in H→e+e−H \to e^+e^-) they yield the same finite temperature correction for all n→pn\to p and p→np \to n processes. Both methods yield an increase in the He/H ratio of .01% due to finite temperature renormalization rather than a decrease of .16% as previously predicted.Comment: 12 pages, 3 figures. LaTe

    Plasma wave instabilities induced by neutrinos

    Get PDF
    Quantum field theory is applied to study the interaction of an electron plasma with an intense neutrino flux. A connection is established between the field theory results and classical kinetic theory. The dispersion relation and damping rate of the plasma longitudinal waves are derived in the presence of neutrinos. It is shown that Supernova neutrinos are never collimated enough to cause non-linear effects associated with a neutrino resonance. They only induce neutrino Landau damping, linearly proportional to the neutrino flux and GF2G_{\mathrm{F}}^{2}.Comment: 18 pages, 3 figures, title and references correcte

    On the thermal sunset diagram for scalar field theories

    Full text link
    We study the so-called `` sunset diagram'', which is one of two-loop self-energy diagrams, for scalar field theories at finite temperature. For this purpose, we first find the complete expression of the bubble diagram, the one-loop subdiagram of the sunset diagram, for arbitrary momentum. We calculate the temperature independent part and dependent part of the sunset diagram separately. For the former, we obtain the discontinuous part first and the finite continuous part next using a twice-subtracted dispersion relation. For the latter, we express it as a one-dimensional integral in terms of the bubble diagram. We also study the structure of the discontinuous part of the sunset diagram. Physical processes, which are responsible for it, are identified. Processes due to the scattering with particles in the heat bath exist only at finite temperature and generate discontinuity for arbitrary momentum, which is a remarkable feature of the two-loop diagrams at finite temperature. As an application of our result, we study the effect of the diagram on the spectral function of the sigma meson at finite temperature in the linear sigma model, which was obtained at one-loop order previously. At high temperature where the decay σ→ππ\sigma\to\pi\pi is forbidden, sigma acquires a finite width of the order of 10MeV10 {\rm MeV} while within the one-loop calculation its width vanishes. At low temperature, the spectrum does not deviate much from that at one-loop order. Possible consequences with including other two-loop diagrams are discussed.Comment: 30 page

    One-Loop Renormalization of a Self-Interacting Scalar Field in Nonsimply Connected Spacetimes

    Full text link
    Using the effective potential, we study the one-loop renormalization of a massive self-interacting scalar field at finite temperature in flat manifolds with one or more compactified spatial dimensions. We prove that, owing to the compactification and finite temperature, the renormalized physical parameters of the theory (mass and coupling constant) acquire thermal and topological contributions. In the case of one compactified spatial dimension at finite temperature, we find that the corrections to the mass are positive, but those to the coupling constant are negative. We discuss the possibility of triviality, i.e. that the renormalized coupling constant goes to zero at some temperature or at some radius of the compactified spatial dimension.Comment: 16 pages, plain LATE

    Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage

    Get PDF
    Batrachochytriumdendrobatidis (Bd) is a globally ubiquitous fungal infection that has emerged to become a primary driver of amphibian biodiversity loss. Despite widespread effort to understand the emergence of this panzootic, the origins of the infection, its patterns of global spread, and principle mode of evolution remain largely unknown. Using comparative population genomics, we discovered three deeply diverged lineages of Bd associated with amphibians. Two of these lineages were found in multiple continents and are associated with known introductions by the amphibian trade.We found that isolates belonging to one clade, the global panzootic lineage (BdGPL) have emerged across at least five continents during the 20th century and are associated with the onset of epizootics in North America, Central America, the Caribbean, Australia, and Europe. The two newly identified divergent lineages, Cape lineage (BdCAPE) and Swiss lineage (BdCH), were found to differ in morphological traits when compared against one another and BdGPL, and we show that BdGPL is hypervirulent. BdGPL uniquely bears the hallmarks of genomic recombination, manifested as extensive intergenomic phylogenetic conflict and patchily distributed heterozygosity. Wepostulate that contact between previously genetically isolated allopatric populations of Bd may have allowed recombination to occur, resulting in the generation, spread, and invasion of the hypervirulent BdGPL leading to contemporary disease-driven losses in amphibian biodiversity.Peer Reviewe

    Transport Coefficients and Analytic Continuation in Dual 1+1 Dimensional Models at Finite Temperature

    Get PDF
    The conductivity of a finite temperature 1+1 dimensional fermion gas described by the massive Thirring model is shown to be related to the retarded propagator of the dual boson sine-Gordon model. Duality provides a natural resummation which resolves infra-red problems, and the boson propagator can be related to the fermion gas at non-zero temperature and chemical potential or density. In addition, at high temperatures, we can apply a dimensional reduction technique to find resummed closed expressions for the boson self-energy and relate them to the fermion conductivity. Particular attention is paid to the discussion of analytic continuation. The resummation implicit in duality provides a powerful alternative to the standard diagrammatic evaluation of transport coefficients at finite temperature.Comment: 41 pages, 6 figure

    Wave Function Renormalization at Finite Temperature

    Get PDF
    We present a derivation of the medium dependent wave function renormalization for a spinor field in presence of a thermal bath. We show that, as already pointed out in literature, projector operators are not multiplicatively renormalized and the effect involves a non trivial spinor dependence, which disappears in the zero temperature covariant limit. The results, which differ from what already found in literature, are then applied to the decay of a massive scalar boson into two fermions and to the β\beta--decay and crossed related processes relevant for primordial nucleosynthesis.Comment: 11 pages, RevTe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore