35 research outputs found

    Packaging of Microfluidic Devices for Fluid Interconnection Using Thermoplastics

    Full text link

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    Growth of Ir overlayers on a Mo(110) surface

    No full text

    Functionalised copper nanoparticles as catalysts for electroless plating

    No full text

    Investigation of a Low Cost Solder Bumping Technique for Flip-chip Interconnection

    No full text
    Published versio

    Neural fields, spectral responses and lateral connections

    Get PDF
    This paper describes a neural field model for local (mesoscopic) dynamics on the cortical surface. Our focus is on sparse intrinsic connections that are characteristic of real cortical microcircuits. This sparsity is modelled with radial connectivity functions or kernels with non-central peaks. The ensuing analysis allows one to generate or predict spectral responses to known exogenous input or random fluctuations. Here, we characterise the effect of different connectivity architectures (the range, dispersion and propagation speed of intrinsic or lateral connections) and synaptic gains on spatiotemporal dynamics. Specifically, we look at spectral responses to random fluctuations and examine the ability of synaptic gain and connectivity parameters to induce Turing instabilities. We find that although the spatial deployment and speed of lateral connections can have a profound affect on the behaviour of spatial modes over different scales, only synaptic gain is capable of producing phase-transitions. We discuss the implications of these findings for the use of neural fields as generative models in dynamic causal modeling (DCM)
    corecore