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This paper describes a neural field model for local (mesoscopic) dynamics on the cortical surface. Our focus is
on sparse intrinsic connections that are characteristic of real cortical microcircuits. This sparsity is modelled
with radial connectivity functions or kernels with non-central peaks. The ensuing analysis allows one to
generate or predict spectral responses to known exogenous input or random fluctuations. Here, we
characterise the effect of different connectivity architectures (the range, dispersion and propagation speed of
intrinsic or lateral connections) and synaptic gains on spatiotemporal dynamics. Specifically, we look at
spectral responses to random fluctuations and examine the ability of synaptic gain and connectivity
parameters to induce Turing instabilities. We find that although the spatial deployment and speed of lateral
connections can have a profound affect on the behaviour of spatial modes over different scales, only synaptic
gain is capable of producing phase-transitions. We discuss the implications of these findings for the use of
neural fields as generative models in dynamic causal modeling (DCM).
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Introduction

The spatiotemporal organisation of brain activity has been the
focus of many empirical and theoretical studies, see e.g., (Bressler,
1984; Freeman, 1978; Jirsa et al., 1995; Spors and Grinvald, 2002;
Valdes-Sosa, 2004). A dominant approach to spatiotemporal model-
ling of brain activity rests on neural field models: in the 70s Amari
proposed an integrodifferential equation, which expressed neural
activity as the response to input from neighbouring populations,
assuming instantaneous postsynaptic processing (Amari, 1977). This
approach has since been extended and is today known as neural field
modeling (see (Deco et al., 2008), for a review of the relationship
among mean-field, neural mass and field models).

Here, we employ neural field models to study how the spatial
characteristics of intrinsic connections (connections confined to the
cortical grey matter) affect the observed spectra of steady-state
activity. In particular, we model spectral responses, due to interac-
tions among coupled neural ensembles on the cortical surface, by
assuming a precise topography of synaptic connections. Neural field
models allow us to predict how the spatial organisation of coupling
among populations is expressed in the dynamical repertoire of the
system's response. Neural field models assume that the cortex is
approximated by a homogeneous Euclidean manifold and neuronal
activity at a given point is modelled by its average postsynaptic
depolarisation. These models fall into the broad category of state-
space models (Valdes-Sosa et al., 2009); a widely used class of such
models are neural mass models, upon which various Dynamic Causal
Models (DCMs) are based (Friston, 2006; Friston et al., 2003; Penny
et al., 2004). However, neural field models differ substantially from
neural mass models because the neural state is characterised by a
mean depolarisation that is a function of space (in addition to time)
and associated spatial parameters controlling the deployment and
coupling of neuronal populations.

In this paper, we focus on one dimensional models and steady-
state responses; namely, we assume that the activity of a neural
ensemble occupying a local patch of cortex is perturbed around some
steady-state due to random (exogenous) fluctuations. By transform-
ing the state equation into the frequency domain, we characterise the
response of the system by a transfer function. This furnishes a
characterisation of frequency responses, in terms of intrinsic
connectivity. The transfer function depends explicitly upon the spatial
properties of the system, such as the spatial distribution of sources
sending afferent (incoming) connections and the velocity of signal
propagation. This is in contradistinction to the transfer function used
in DCM for steady-state responses (Moran et al., 2009), which
depends only upon lumped synaptic time constants and connection
strengths.

We also consider the stability of the resulting neural field models
in relation to the so-called Turing instability. In 1952 Turing suggested
an explanation for the patterning of animal coats in terms of a
reaction-diffusion process. He showed that an instability occurs
during the system's transition from a regime where diffusion is
absent to a regime where diffusion predominates. This instability
leads to a spatially inhomogeneous state, which accounts for
spontaneous pattern formation observed in a variety of processes.
These ideas were first implemented in the context of neural field
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models by Wilson and Cowan (1972) and were used later by
Ermentrout and Cowan (1979) to develop their theory of visual
hallucinations. In the case of neural fields with axonal delays, the
relevant analysis involves the notion of dynamic Turing instabilities.
The first such instabilities were found by Bressloff (1996) and have
been studied by other authors such as Hutt et al. (2003). Coombes and
colleagues provide an excellent account of such phenomena in the
context of neural fields (Coombes, 2005; Venkov et al., 2007).

Steady-state (or ongoing) activity spectra, associated with neural
field equations, have been studied as models of the whole cortex (e.g.
Jirsa, 2009). Robinson (2006) has developed a neurophysiologically
informed field model of corticothalamic activity, which has proven
successful in reproducing several properties of empirical EEG signals;
such as the spectral peaks seen in various sleep states and seizure
activity. In contrast to thiswork, themodel used inour paper considers a
local patch of cortex, as opposed to the global dynamics of the entire
corticothalamic system. Furthermore, our focus is on the influence of
intrinsic connectivity and the spatial characteristics of coupled neural
populations at amesoscopic level (i.e., in the order of a fewmillimetres)
on theobserved spectra, asopposed to considering the scalpEEGspectra
measured from the whole brain. In particular, we will consider models
that speak to the spatially discontinuous and patchy distribution of
connections in the brain that are a hallmark of functional specialisation
(Zeki, 1990). Functional specialisation demands that cellswith common
functional properties are grouped together. This architectural constraint
necessitates both convergence and divergence of cortical connections.
However, connections within and among cortical regions are not
continuous but occur in patches or clusters and are mediated by axon
collaterals that can extend for up to 5–7 mm (Angelucci and Bressloff,
2006). The existence of patchy connections in various cortical areas and
various species has been well-established through extracellular tracer
injection techniques, see Burkhalter and Bernardo (1989), Stettler et al.
(2002) andWallace and Bajwa (1991) for human,macaque and cat data
respectively. Furthermore, it has been shown that such connections can
have profound implications for neural field dynamics, see Baker and
Cowan (2009).

This paper comprises two sections. In the first, we provide the basic
theorybehindour applicationofneuralfieldmodels,witha special focus
on spectral formulations and stability analyses. In the second section,we
consider the implications of this theory for the influence of intrinsic
connections on spectral activity, stability and pattern formation. Our
interest here is on local (mesoscopic) dynamics that arise with sparse
and patchy intrinsic or lateral connections. We model these with a
slightly unusual connection kernel that has multiple non-central peaks.
This allows us to manipulate both the range (modal distance) and
dispersion of intrinsic connections. We then examine how changes in
the range, dispersion, speed and synaptic gain of intrinsic connections
affect spectral behaviour and stability. This kernel is unusual because the
kernels inmost neural field models decay with distance from the target
location. However, this form of kernel does not capture the influence of
horizontal connections from remote cortical patches that are charac-
teristic of real intracortical connections. We conclude with a brief
discussion of the applications of the models described in this paper,
particularly their use as generative models and their inversion based on
optical and other functional imaging data in the context of dynamic
causal modelling.

The neural field equation

Transfer function

Neural field models are based upon complicated integrodifferential
equations that usually preclude a full analytical treatment. Therefore,
one usually resorts to suitable approximations to obtain solutions. The
solutions of the corresponding integrodifferential equations include
spatially and temporally periodic patterns beyond Turing instabilities;
for example, localised regions of activity such as bumps and travelling
waves, see (Pinto and Ermentrout, 2001) (Coombes et al, 2003), (Laing
and Troy, 2003), (Hutt et al, 2003), (Atay and Hutt, 2006), (Laing and
Chow, 2001) and (Rubin and Troy, 2004).

One well-known approach for obtaining solutions is to Fourier
transform the neural field equation, therefore replacing the integro-
differential equation by a partial differential equation, under the
assumption that the Fourier transform of the connectivity kernel
(describing the spatial deployment of neuronal connections) is
rational and well-behaved (Jirsa and Haken, 1997). Another approach
to obtain solutions of the neural field equation is to perform a linear
stability analysis: this assumes that the system is at a steady-state v0
and is perturbed by some external (exogenous) input u(x, t). If the
input is stationary, then the ensuing activity corresponds to steady-
state activity. If the input is manipulated experimentally (e.g., a
stimulus), then the solutions yield induced or evoked responses. Here,
we linearise around a steady-state to obtain an expression for the
transfer function of the neural field equation. This allows us to express
the system's spectral responses in terms of its key architectural
parameters; namely its connectivity, post-synaptic gain and velocity
of signal propagation. For notational clarity we will use lower case
letters for time-varying quantities and upper case latter for their
Fourier transform.

We start with the expected depolarisation v(x, t) at point x in the
cortex, due to a presynaptic input from point x′,

v x; tð Þ = ∫
t

−∞
σ t−t0
� �

μ x; t0
� �

dt0 ð1Þ

where μ(x, t) is a spatial convolution of presynaptic input:

μ x; tð Þ = ∫
∞

0

∫
∞

−∞
d x0

�� ��; t0� �
f v x−x0; t−t0

� �� �
dx0dt0 + u x; tð Þ ð2Þ

and σ(t) models postsynaptic filtering of presynaptic inputs (firing)

σ tð Þ = be−bt : t N 0
0 : t≤0

�
ð3Þ

The function σ(t) can be thought of as a Green's function of a
differential operator, cf. (Amari, 1977). Here, d(|x|, t)=κ(|x|)δ(t−ε|x|)
is a delayed version of a connectivity kernel κ(|x|) that accounts for
axonal propagation delays. The conduction delay ε is the inverse of the
speed with which signals propagate along connections, b is the
average synaptic decay rate and f(v) is a post-synaptic firing rate
function, which we assume to be a sigmoid.

Eqs. (1)–(3) are the precise analogues of the twomain transforma-
tions associated with integrate and fire models (Jansen and Rit, 1995).
Namely, Eq. (1) models the filtering of presynaptic input (firing rate)
by the synaptic response function defined by Eq. (3) and transforms
the presynaptic input into membrane depolarisation, v(x, t). Eq. (2)
implements a weighted summation of activity delivered to neurons at
point x fromneurons at point x′ and transforms the averagemembrane
depolarisation of the presynaptic population into firing rate, μ(x, t).
Assuming that, as a result of constant external input u, the system is
perturbed around a spatially homogeneous steady-state v0, where,

v0 = f v0ð Þ ∫
∞

−∞
κ jx jð Þdx + u ð4Þ

we can define the transfer function of the neural field by the following
relation:

D k;ωð Þ = V k;ωð Þ
F k;ωð Þ ð5Þ
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For simplicity, the transform of the synaptic convolution kernel
has been omitted here under the adiabatic approximation that its
time-constant is small in relation to fluctuations in voltage caused by
exogenous input and neural field effects (i.e., we are assuming that
v(x, t)≈μ(x, t)). Here,V(k,ω) is the Fourier–Laplace transform(a Fourier
transform in the spatial domain and a Laplace transform in the time
domain) of the depolarisation

V k;ωð Þ = FLT v x; tð Þð Þ

= ∫
∞

−∞
dx∫

∞

0

dtv x; tð Þe−ikx−ωt ð6Þ

with ω∈C and D(k,ω) and F(k,ω) are defined similarly as the Fourier
transforms of d(|x|, t) and f(v(x, t)) respectively. This means that we
can characterise the spectral response of the system to any external
input, in terms of the underlying connectivity kernel, propagation
velocities and post-synaptic response function.

The characteristic equation and spectral power

If we assume that fluctuations around the steady-state solution of
the neural field Eq. (1) have the form eωteik⋅x : ω∈C; k∈R, then these
fluctuations represent decaying waves, with angular velocity Im(ω)
and wavenumber k , propagating with phase velocity υ=Im(ω)/k.
Substituting v(x, t)=v0+eωteik ⋅ x into Eq. (1), we obtain (after
expanding f(v) around v0),

ω + 1ð Þeikxeωt =
g
4
∫
∞

0

∫
∞

−∞
d x′

�� ��; t0� �
eik x−x′

� �
eω t−t′

� �
dx0dt0 ð7Þ

In this equation, we have rescaled time in terms of membrane time-
constant and have used f′(v0)=g/4. In other words, we have approx-
imated the firing rate function with a linear function of gain, g. The
exponentials onboth sidesof Eq. (7) cancel andwhenweexpressEq. (7)
in terms of the Fourier-Laplace transform D(k,ω) of d(|x|,t), we obtain
the characteristic equation of the linearised system E(k,ω)=0, where

E k;ωð Þ = ω + 1− g
4
D k;ωð Þ ð8Þ

Since the Fourier transform D(k,ω) is an explicit function of k and
ω, it follows that the solution to Eq. (8) yields a dispersion relation
ω=ω(k). This relation connects the spatial and temporal properties
of the perturbations to the steady-state. For a fixed value of the gain,
the dispersion relation yields a curve in the complex ω-plane as a
function of the wave number k. As we will see in Spectral responses,
this curve entails the complex spectrum of the system and determines
the stability of its responses. In particular, Turing instabilities occur if
the spectrum crosses the imaginary axis from the left of the complex
plane.

In the following, we use this relation to compute spectral
responses of spatially extended neural populations. It should be
emphasized that Eq. (8) is completely analogous to the characteristic
equation associated with neural mass models (Moran et al., 2007). In
both cases, the characteristic equations give the spectral responses of
the corresponding neural system: in the case of linearised neural mass
models, the spectral response is determined by the eigenspectrum
(spectrum of eigenvalues) of the system's Jacobian, while for the
neural field models considered here, this response is determined by
the equivalent solution to the characteristic equation; i.e., the
dispersion relation. In both cases, the frequency response of the
system is analogous to the magnitude of the corresponding transfer
function. Indeed, we have here,

ω + 1j j∝ D k;ωð Þj j ð9Þ
This corresponds to the equation defining the frequency response
for neural mass models. In both cases, Re(ω) expresses the rate in
which the system returns to its resting state after a brief external
perturbation and Im(ω) prescribes the frequency of these damped
oscillations. However, there is an important difference between the
neural mass approach and the approach used here: the characteristic
Eq. (8) couples the spectral response of the system to the spatial
properties of the system, such as the distribution of sources on the
cortical sheet and delays due to finite propagation speeds. In neural
mass models, the spatial properties of underlying neural populations
are ignored and the spectrum is characterized only by rate constants.

In this paper, when we talk about spectra, we refer to the
(complex) eigenspectrum that characterises the system's transfer
function ormapping from inputs to responses. This is formally distinct
from the spectral density associated with conventional time-series
analysis, which we will refer to as power spectra or spectral power.
However, spectral power can be derived easily from the transfer
function, given the spectral power of the inputs: For example, under
white noise input the power spectrum S(k,ω) for a spatial wavelength
λ=2π/k and temporal frequency ω is given by S(k,ω)=|D(k,ω)|2,
where we have assumed g=4. The integral over all k (spatial
frequencies) yields the total power spectrum,

S ωð Þ = 2πð Þ−1∫ D k;ωð Þj j2dk ð10Þ

Simulated EEG power spectra can be generated from Eq. (10) by
replacing D(k,ω) with D(k,ω)H(k), where H(k)=e− k/k0 is a filter that
accounts for volume conduction effects in the skull and scalp. This
generally results in the attenuation of signal with wave-numbers
kNk0, where k0 = 20 m-1 is a characteristic low-pass wave-number
(Robinson, 2006).

Stability

The dispersion relation ω=ω(k) determines the stability of the
neural field equation. In particular, the steady-state is stable in the
linear approximation if Re(ω)b0, which is a condition assumed for
steady-state responses. This implies that the spectra need to be on the
left half of the complex plane (where the horizontal and the vertical
axes depict the real and imaginary parts of ω respectively). Using a
conformal mapping of the left hand complex plane to the interior of
the unit disc, the above condition for stability can be recast as a
condition that the spectra lie within the unit circle, cf. (Moran et al.,
2007). Furthermore, Eq. (8) depends explicitly on the synaptic gain g;
even if the system is initially at a fixed point changing the gain can
render the system unstable. A similar phenomenon was observed
numerically in (Moran et al., 2007) for neural massmodels: increasing
the gain led to an increase and broadening of the power and, at some
point, a loss of stable band-pass properties. The mathematical
description of this phenomenon appeals to the notion of Turing
instability, which (for classical reaction-diffusion systems) is defined
as an instability that emerges when the system leaves a spatially
homogeneous resting state and enters an inhomogeneous state as a
result of diffusion. This instability leads to spontaneous pattern
formation, which (in two spatial dimensions) typically leads to stripes
or hexagonal patterns. A treatment of such instabilities has been
developed in the context of neural fields by (Wilson and Cowan,
1972). As we will see in Bifurcations, several instances of cortical
dynamics could be described by Turing instabilities, for example
pathological increases in synaptic gain associated with kindling and
epilepsy.

In the context of neural field theory, the onset of dynamic Turing
instability of the homogeneous steady state has been investigated and
patterns emerging from this instability have been discussed in (Hutt
et al., 2007), (Venkov et al, 2007), (Hutt et al., 2008), (Elvin et al.,



Fig. 1. Connectivity kernel. Connectivity kernel describing the strength of intrinsic
(lateral) connections within a neuronal field mode; see Eq. (12). The insert was
modified from www.ini.uzh.ch/node/23776.
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2009). Also, the Turing instability analysis in layered 2D systems for
neural fields with space-dependent delays is treated in (Coombes
et al., 2007).

Assuming that axonal delays are negligible, it follows from Eq. (8)
that for synaptic gain,

g N
4

K kð Þ ð11Þ

where K(k) denotes the Fourier transform of the connectivity kernel
κ(|x|), the neural field model described by Eqs. (1)–(3), with ε=0, is
unstable. With axonal propagation delays, the analysis is a bit more
complicated and leads to the notion of dynamic Turing instabilities. A
Turing instability is induced by changing the value of a control
parameter, such as the synaptic gain or the wave-number kT
corresponding to ωT. The instability arises when the spectrum crosses
the imaginary axis for the first time. If kT≠0 then this wave-number
corresponds to a travelling wave moving with velocityωT/kT. If kT=0,
then the Turing instability gives rise to another spatially uniform
state. IfωT has a non-zero imaginary part, then the Turing instability is
called dynamic and is the solution of the neural field equation
described by a limit cycle with frequency Im(ωT). In the next section,
we consider a particular class of kernels describing intrinsic
connectivity and the Turing instabilities induced by varying synaptic
gain.

Spectral responses

Patchy connections

In the following, we consider a neural field model describing a
system of interacting neural populations whose connections are not
local but come from remote patches of the neural field; see Fig. 1. In
other words, we are interested in modelling an ubiquitous aspect of
horizontal connections in cortex; namely, their highly structured
patchy or clustered organisation. These connectivity profiles have
been studied most extensively in visual cortex (but see also Krubitzer
and Kaas, 1990) and are generally thought the give rise to patches of
functional segregation (e.g., ocular dominance, orientation selectivity
etc.). See Angelucci and Bressloff (2006) for an excellent review. In
short, neurons do not necessarily talk only to their immediate
neighbours but send and receive connections preferentially with
more remote populations who share the same functional selectivity;
usually a millimetre or so away (e.g. Yoshioka et al., 1992). In a future
work, we will consider kernels that have both remote and local
component: Here, we focus on the dynamics that arise from non-local
lateral interactions. We model the relevant connections with a
connectivity kernel that has two peaks of height c located at distance
a away from the target population (cf (Brackley and Turner, 2009)
who consider inhomogeneous two point connections without delays
as opposed to the homogeneous connections with conduction delays
considered here),

κ xj jð Þ = c
ec x−aj j +

c
ec x + aj j ð12Þ

Kernels which are not peaked at the origin have been considered in
the literature; see (Troy, 2008), (Hutt and Atay, 2005) and (Atay and
Hutt, 2004). In particular, several studies focus on kernels that peak
away from the origin, e.g. (Rinzel et al., 1998). However, the kernels
considered here have the particular property that are symmetric
around a point other than the origin (or comprise a sum of such
terms). As explained in (Grindrod and Pinotsis, 2011), it is this
property that leads to infinite-branched complex spectra discussed in
below.
An example of a kernel of the form of Eq. (12) for c=10 and a=2
is given in Fig. 1.

The parameter a denotes the (modal) distance or range of
neighbouring populations that contribute to the spectra of the target
location. The parameter c describes the spatial extent of these
contributions; namely, as c decreases, the bell-shaped curves of Fig. 1
become broader, which implies that the sources of afferent connections
are more extensive or dispersed in space. On the other hand, in the limit
c→∞, Eqs. (1)–(3)with connectivity defined by Eq. (12) describe a chain
of neuralmasses coupled to each other over distances a. In short, Eq. (12)
defines a class of connectivity kernels that account for nonlocal
interactions between neighbouring neural populations that are para-
meterised in terms of the range and dispersion of lateral connections.
Such kernels were introduced in Grindrod and Pinotsis (2011) and
consist of a sumof terms that are symmetric arounddistal locations. They
enable theparameterisation of interactions amongdistantpopulations as
opposed to local interactions usually considered in the literature, see e.g.
(Coombes et al., 2003; Venkov et al., 2007). Usually these connectivity
kernels have a single peak at x=0 making local behaviour the most
dominant influence. The analysis of bimodal kernels involves the solution
of transcendental equations and results in spectra with an infinite

http://www.ini.uzh.ch/node/23776


Fig. 2. The spectrum obtained using the connectivity kernel (12). The spectrum ω of
predicted steady-state responses using the bimodal connectivity scheme in Eq. (12).
The spectrum is shown in the complex plane, where the imaginary part (vertical axis)
determines the frequency of the response and the real part (horizontal axis) reflects the
time course over which responses to perturbations decay (cf, the amplitude under
white noise perturbations). The blue dots are the origin of each semi-branch at k=0
(i.e. at the lowest spatial frequency). The semi-branches B1 and B2 are first order
branches of multi-branched spectra associated with the neural field equation (for more
details on spectra with an infinity of branches, see (Grindrod and Pinotsis)). Also, RS
denotes the finite positive real part of the spectrum.
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number of branches. Grindrod and Pinotsis consider several mathemat-
ical properties of the spectra for the closely related kernel

κ xj jð Þ = r
2er x−1j j +

r
2er x + 1j j ð13Þ

and the relation between the neural field equation with axonal delays
and differential-delay equations is demonstrated through the use of
the so-called Lambert function. It should be noted that multibranched
spectra of the sort obtained here include an infinite number of
branches and are distinct from the multibranched spectra obtained in
Nunez, (1995); a crucial difference being that the dispersion relation
is transcendental as opposed to a sum of rational functions.

The kernel we consider in this paper, namely the function κ(|x|)
defined by Eq. (12), is an explicit function of the distance of
neighbouring populations producing observed spectral responses.
This means we can study the spectral behaviour and stability of
dynamics as a function of the range of “patchy” interactions. This is to
be contrasted with the approach in (Grindrod and Pinotsis, 2011),
where this distance was assumed to be fixed (and equal to unity). In
short, the present approach exploits the explicit parameterisation of
measured responses in terms of the spatial dispersion and range of
intrinsic connections. Substituting Eq. (12) into the characteristic
Eq. (8) and assuming connectivity has local support1 for x∈(−a,a),
we obtain an expression coupling the spectral responses of the system
with the relevant wave-numbers. This expression depends on the
shape of the neuronal distributions, the distance between coupled
populations and the conduction velocity, which are described by the
variables c, a and ε respectively:

E k;ω; a; εð Þ = ω + 1− g
4
D k;ωð Þ

D k;ωð Þ = c
e−accþ−e−εaω−2ac cþα + β

� �
4k2π2 + cþcþ

+
e−εaωc−α−e−acc− + e−εaω−acβ

4k2π2 + c−c−

" #

α = cos 2akπð Þ
β = 2kπ sin 2akπð Þ
cþ = c + εω

c− = c−εω

ð14Þ

In summary, the kernel defined by Eq. (12): (i) parameterises the
spectral responses in terms of distance a between coupled popula-
tions; (ii) incorporates their spatial extent c and (iii) the propagation
speed 1/ε of neuronal message passing. Equipped with this equation,
we can now study the spectral power and stability of “patchy”
neuronal interactions on the cortical sheet.

Spectral power

In Fig. 2, we depict the real versus the imaginary part of ω (the
solution to Eq. (14) at different values of the wave-number). As with
differential-delay equations, the spectrum of Eq. (1) with a connec-
tivity kernel of the form of Eq. (12) has infinitely many branches,
where each branch describes the dynamics of spatial modes of
increasing wave-number.

Each coloured curve corresponds to a semi-branch of the
frequency spectrum as explained in (Grindrod and Pinotsis, 2011).
The appearance of multiple branches implies that for the same value
of the real part ofω, depicted on the horizontal axis, there aremultiple
corresponding imaginary values. This can be seen by considering
vertical lines, which intersect the coloured curves of Fig. 2 at multiple
points. These imaginary values determine the observed frequencies,
since the corresponding signals have a temporal profile of the form eRe
1 A function has “local (compact) support” when it is non zero at a finite set of
points of its domain.
(ω)teiIm(ω)t. Furthermore, because the coefficients of ω in Eq. (8) are
real, the spectrum has a symmetry around the horizontal axis;
therefore, for every response with temporal profile eRe(ω)teiIm(ω)t,
there is another response with profile eRe(ω)te− iIm(ω)t. It should be
noted that, in contrast to the kernels considered in our earlier paper,
the requirement of local support imposed here appears to have added
a positive real part of finite length to the spectrum of the system (see
the blue-green line “RS” on the positive real axis of Fig. 2, where RS
denotes the finite positive real part of the spectrum). This part is
present in all simulations below, although for clarity the positive real
axis is omitted in subsequent figures. This is an interesting
mathematical attribute of the current framework, which can account
for the spontaneous appearance of decaying travelling waves of long
wavelength, due to random perturbations and noise.

The existence of multiple (in theory, infinite) branches in the
spectra of the solution to the neural field equation depends crucially
upon the choice of the kernel (12). This might seem counterintuitive
to some, who might expect that the infinite degrees of freedom in any
differential-delay equation (such as the neural field equation) would
generate a multitude of branches, regardless of the choice of the
kernel. However, for a large class of kernels commonly used in the
literature, the spectrum is finite; for more details we refer the reader
to (Grindrod and Pinotsis, 2011). We now focus on the structure of
one of the semi-branches depicted in Fig. 2, namely the blue semi-
branch, denoted by B1. By plotting the real and imaginary parts of this
semi-branch against the spatial wave-number k, we obtain the results
in Fig. 3.

The blue and green curves show the real and imaginary part of ω
respectively. The real part stays negative as we increase k, therefore
the spectrum is stable at all spatial frequencies. The real part
fluctuates between (−0.2, 0) and for wave-numbers greater than
k∼3.5 it stabilises around −0.12. This implies that for kN3.5 the
oscillatory dynamics in these spatial modes will decay to zero at the
same rate, regardless of the corresponding wave-number. Further-
more, the green curve reveals that increasing the wave-number
progressively increases the frequency of steady-state oscillations; this
is an intrinsic property of the connectivity kernel (15) and is not
typical of all neural field systems with delays, see e.g. Jirsa (2009)
where increasing k results in a saturation of temporal frequencies.

Substituting the expression for D(k,ω) in Eq. (14) into Eq. (10)
furnishes the power spectrum for the neural field with connectivity
defined by Eq. (12). We evaluated this integral numerically by adding
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Fig. 3. Real and imaginary parts of the spectrum. The blue and green curves are the real
and imaginary parts respectively of a spectrum (the blue semi-branch in the previous
figure) as a function of spatial wave-number (frequency).

Fig. 5. Log-power spectra for different values of conduction velocity. As for Fig. 4, but
changing the conduction velocity from low (red curve: ε=5) to higher (blue curve:
ε=2) values.
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terms for fixed values of k to produce the results in Fig. 4. Since the
connectivity has local support in (−a,a) and assuming periodic
boundary conditions, we can approximate this integral with

S ω; a; ε; cð Þ≈ 1
2a

∑
M

m=0
D km=πm=a;ωð Þj j2 ð15Þ

Choosing ε=5 and a=c=1, g=4 and M=40, we obtain the red
curves in Figs. 4–6. These curves represent the log-power spectra (over
spatial frequencies) as a function of temporal frequency w=Im(ω).
These results depict a 1/w behaviour, which is typical for EEG power
spectra that show scale-free regimes, in which the power falls in
inverse proportion to frequency; (He et al., 2010; Jirsa, 2009; Kayser
and Ermentrout, 2010; Robinson, 2006).

In Stability analysis, we will look at the stability properties of
spectra, when changing various biophysical parameters. We conclude
this subsection by illustrating the effects of these parameters on
predicted power spectra and relate these effects to empirical
observations. As the spatial separation of coupled neural populations
increases, e.g., a=1.3 (blue curve of Fig. 4), the total spectral power
reduces and falls faster for higher frequencies, in a manner similar to
local coherence functions observed in primate recordings, see Leopold
et al. (2003). The opposite is the case as the velocity increases (see
Fig. 5).
Fig. 4. Log-power spectra for different values of connectivity range. Log-power spectra
as a function of frequency, based on the solution to Eq. (14). Red curve for a connectivity
range of a=1 and blue curve for a = 1.3.
In this instance, higher frequencies are less damped. Furthermore,
the effect of increasing velocity is apparent only for frequencies
greater than w=0.2. For lower frequencies, the blue and red curves
coincide. These results accord with experimental results, where high
frequencies are damped over shorter distances than lower frequen-
cies. Finally, as c increases, the total power increases; and this effect
appears to be stronger for lower frequencies. See the blue curve in
Fig. 6. Again, these results are similar to the empirical observations of
Leopold et al. (2003).

Stability analysis

We can now investigate the influence of the biophysical
parameters on the predicted spectra. Although it is straightforward
to obtain corresponding results for higher order branches, for
simplicity we will restrict ourselves to first order branches
(corresponding to the rightmost semi-branches of Fig. 2). The
following results were obtained using the numerical scheme of
Grindrod and Pinotsis.

Fig. 7 shows that as spatial separation (the range of intrinsic
connections) decreases the spectramove to the left and tend to expand.
This implies that the spectrum becomes more stable (decays more
rapidly) and that higher imaginary values correspond to the same real
part of ω. Hence, we would expect to see an increase in observed
frequencies and reduced amplitude or increased dampening over
frequencies (cf Figs. 4 and 5). Also, the real part is always present and
its origin (zero order branch) moves away from (0,0) as separation
decreases. In other words, uniform activity decays more quickly.
Phenomenologically this is reminiscent of the desynchronisation seen
Fig. 6. Log-power spectra for different values of dispersion. As for Fig. 4, but changing
the spatial extent (dispersion) of afferent populations from c=1 (red curve) to c=2
(blue curve).
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Fig. 7. Complex spectra for various values of connectivity range. The spectrum ω of
predicted steady-state responses using the bimodal connectivity scheme in Eq. (12).
The spectrum is shown in the complex plane, where the imaginary and real parts of ω
are depicted on the vertical and horizontal axes respectively (see also Fig. 2).Here c=2,
ε=20 and we vary a between 0.6 and 1.4: Each coloured line corresponds to a first
order branch for various values of a; the branch corresponding to a=1 is depicted in
red. Each blue dot depicts the corresponding origin of each branch.

Fig. 8. Complex spectra for various values of velocity. As for Fig. 7, but choosing c=2,
a=1 and varying ε between one fourth and four times its original value ε=20. The
panels show a first order branch as the conduction velocity increases (above) or
decreases (below); the branch corresponding to ε=20 is depicted in red.

Fig. 9. Complex spectra for various values of dispersion. As for Fig. 7, but choosing
ε=20, a=1 and varying c between one fourth and four times its original value c=2.
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in EEG activation studies (Brown and Marsden, 1999; Lemm et al.,
2009; Pfurtscheller and Lopes da Silva, 1999), which entails a loss of
high-amplitude slow fluctuations and an increase in faster dynamics.
The current analysis suggests this sort of spectral behaviour rests could
be reproduced by “shrinking” the range of lateral intrinsic interactions,
e.g., through nonlinear synchronous gain mechanisms (Grossberg and
Raizada, 2000; Li, 1998).

Clearly, we do not expect to see sustained oscillations at large
separations: indeed, there is a critical value of a=1.5, at which the
multiple spectrum branch disappears. A similar phenomenon appears
for a≤0.5 and may suggest our model cannot describe interactions
over very short distances; this is consistent with our earlier
observations, when we noted that kernels of the form of Eq. (12)
are appropriate for describing non-local interactions as opposed to
kernels which peak at the origin, such as the commonly used Mexican
hat.

We next examined the effect of changing conduction velocities:
The red branch in Fig. 8 is the same first order branch shown in Fig. 2.
As the conduction velocity increases (ε decreases) the spectra move to
the left and tend to expand, therefore we would expect to see higher
frequencies, which are subject to more dampening. This is consistent
with the “desynchronisation” observed when reducing the range of
lateral interactions; in the sense that increasing the conduction
velocities also reduces transmission delays between populations.
However, the system appears to bemore robust to changes in velocity,
namely the infinitely branched spectrum is always present and does
not disappear as was the case when varying a above. This means we
expect to see sustained oscillations even for very small velocities.

As the spatial extent (dispersion) of the afferent populations
increases (c decreases), the system becomes more stable (Fig. 9).
However, in contrast to the previous two cases, we do not see any
change in the width of the spectrum and therefore would not expect
to observe any change in frequencies. Also, the effect of changing c on
higher frequencies appears to be smaller than the corresponding
effect in lower frequencies (cf Fig. 6). It should be noted that although
increasing c moves the real part of the spectrum towards zero, the
spatial extent of the population does not affect the stability of the
system qualitatively: In the limit c→∞ (a chain of coupled neural
masses), we recover the stable spectra of a system of differential-
delay equations (Grindrod and Pinotsis, 2011). However, we show
below that synaptic gain g can induce phase-transitions, which are
manifest as spectra with cusps in the right hand side of the complex
ω−plane. This is in accordance with the theoretical analysis of Turing
instability, which establishes g as a control parameter (see Stability).
Similar spectra were found when considering afferent populations at
x=±1 and x=±2 (see Fig. 6 of Grindrod and Pinotsis).

Bifurcations

In the above simulations, we assumed g=4 and obtained a series
of spectra with stable complex parts (Re(ω)b0:∀ Im(ω)≠0) involv-
ing an infinite number of branches. Below, by changing the synaptic
gain, we observe that the stability of the system alters as some of the
branches cross the imaginary axis, leading to the appearance of limit
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Fig. 11. Log-power spectrum involving a peak. Log-power spectrum as a function of
frequency (w), based on the solution to Eq. (14) with c=2, ε=5, a=1 and g=16. Note
the peak at w=1.7.
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cycles corresponding to waves on the cortex patch. In particular,
varying g between one fourth and eight times its original value, we
obtain the spectra shown in Fig. 10.

From Fig. 10 (above) we see that as g decreases the spectrum
moves to the left (parallel to the real axis). Similarly, from the panel
below, we conclude that for g=16 (light green curve), the imaginary
part of the spectrum reaches the imaginary axis for the first time,
corresponding to a Hopf bifurcation at Im(ωT)=0.36 (red point in
Fig. 10—panel below). At this point self-sustaining oscillations (limit
cycles) appear at a particular spatial scale, even in the absence of any
perturbations. A local maximum appears in the corresponding power
spectra, which ceases to exhibit a simple 1/w form (Fig. 11). Empirical
EEG power spectra with similar peaks may be associated with the
emergence of these cortical waves as suggested in the pioneering
work of Nunez, see (Nunez and Srinivasan, 2006) for a useful review.

Repeating the analysis of Spectral power, we find that changing
the conduction velocity or the separation of cortical populations can
have a profound effect on the dominant frequencies appearing in the
simulated power spectra: The local maximum in Fig. 11 moves to the
left and new local maxima appear as the delays increase or the
connectivity range decreases, similar to the predictions of Nunez and
Srinivasan (2006).

Further increases in gain drive the system into an unstable regime:
for g=32 (green line) three periodic solutions appear, with different
frequencies with equal real parts of ω (points A, B and C of Fig. 10)
alongwith their conjugate imaginary parts (points D, E and F). Clearly,
in a linear system, these would not be observable because they would
increase in amplitude as an exponential function of time. However, in
real (nonlinear) neuronal systems the co-occurrence of different
temporal frequencies at different spatial scales is characteristic of
Fig. 10. Complex spectra for various values of gain. As for Fig. 7, but choosing ε=20,
a=1, c=2 and varying g between one fourth and eight times its original value g=4.
The right and left panels show a first order branch as the gain decreases (above) or
increases (below). The branch corresponding to g=4 is depicted in red. A Hopf
bifurcation occurs for g=16 and temporal frequency w=0.36 (red point in the right
panel).
cortical dynamics in critical regimes, close to phase transitions:
(Freeman, 2003; Freeman and Barrie, 2000). One might suppose that
these sorts of dynamics arise during self-organised criticality (Bak
et al., 1988; Kitzbichler et al., 2009) or indeed be evident in
pathological increases in synaptic gain of the sort associated with
kindling and epilepsy (Morimoto and Goddard, 1986; Wendling et al.,
2002). It is interesting to note that most anti-epileptic drugs act
through decreasing the sensitivity of population dynamics to afferent
input by increasing inhibitory neurotransmission (Greenhill and
Jones, 2010; Rigo et al., 2002). It also suggests that the cortical gain
control is (literally) critical (Abbott et al., 1997). From a neuroscience
perspective, the fact that changes in synaptic gain express themselves
in a potentially qualitative fashionmeans that onemay be able to infer
synaptic gain parameters from observed spectral activity. We pursue
this theme in the conclusion.

Discussion

In this paper, we have described a neural field model for local
(mesoscopic) dynamics on the cortical sheet. In general, neural fields
are formulated in terms of integrodifferential equations with delays.
Such equations have a rich repertoire of solutions including standing
waves, bulk oscillations and travelling wave patterns that depend on
the nature of the coupling kernel, see (Coombes, 2005), (Laing and
Troy, 2003) and (Laing and Chow, 2001). Commonly used kernels,
such as the Mexican hat render local interactions predominant and
result in dispersion relations of a rational form as well as finite
complex spectra. Here, we have introduced a class of kernels giving
rise to dispersion relations of a transcendental form and spectra with
an infinite number of branches. These kernels have non-central peaks
that enable one to model (in an admittedly crude way) sparse
intrinsic connections that are characteristic of real cortical micro-
circuits. The ensuing analysis allows one to generate or predict
spectral responses to exogenous input or fluctuations. Crucially, we
were able to characterise the effect of different connectivity
architectures and synaptic gains on the ensuing spatiotemporal
dynamics.

In principle, the fact that changes in the range or dispersion of
intrinsic connections are expressed in terms of spectral behaviour
means (Fig. 11) that thesemodels can be used as generative (forward)
models in dynamic causal modelling of empirical electrophysiological
data. In other words, we can optimise the parameters of intrinsic
connectivity and synaptic gain to best explain observed responses of
an induced or evoked sort. Furthermore, the particular sensitivity to
synaptic gain, in terms of critical slowing of various spatial modes and
possible bifurcations (Fig. 10), means that inversion of these models
may be particular sensitive to synaptic gain parameters (cf, Moran
et al., 2009). Note that formulating the model in terms of a transfer
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function means that we have an implicit generative model of evoked
or steady-state activity. The difference simply depends on whether
the transfer functions are applied to known (experimental) deter-
ministic inputs or random fluctuations withwell-behaved statistics. In
this paper, we have illustrated steady-state responses under white
noise inputs, but the same transfer functions can also be applied to
experimental inputs that are functions of peristimulus time.

The key advance that neural field models offer, over conventional
neural mass models, is that they embody spatial parameters. This
means one can infer the spatial parameters of cortical infrastructures
generating electrophysiological signals (and infer changes in those
parameters over different levels of an experimental factor). This rests
on generating responses not just in time but also over spatial scales.
Clearly, to exploit this sort of model, one would need to characterise
the temporal dynamics of observed cortical responses over different
spatial scales. In practice this would call for high-density recordings,
probably at the epidural or intracortical level. However, data from
optical imaging (Arieli et al., 1995; Zepeda et al., 2004) may also
provide sufficient spatiotemporal resolution to support model
inversion. The inversion of these models rests on a mapping from
distributed cortical source activity to sensor data that can be specified
accurately and preserves spatial information about the expression of
different frequencies at different spatial scales (cf, the use of Wavelet
decompositions; Schultze-Kraft, M., et al., 2010). One interesting issue
here is that the curvature of the cortical surface may provide a
rationale for the (difficult) inversion of forward models of non-
invasive (e.g., scalp) data. This is because the spatial frequency “seen”
by each electrode will be a function of the way the cortical manifold is
embedded in the conduction volume. We will pursue this and related
ideas in a subsequent paper.

We conclude with the usual qualifications about linear stability
analyses, in relation to nonlinear systems, and the fact that we have
only used a one-dimensional cortical sheet: Although we are working
on two-dimensional formulations, we anticipate similar results,
because of the rotational symmetry of the spatial kernels on which
the model is based. We hope that the analyses presented in this paper
are sufficient to show that neural field modelling has something
interesting to say about spatiotemporal dynamics at bothmacroscopic
and mesoscopic scales.
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