33 research outputs found
Modeling the Radio and X-ray Emission of SN 1993J and SN 2002ap
Modeling of radio and X-ray observations of supernovae interacting with their
circumstellar media are discussed, with special application to SN 1993J and SN
2002ap. We emphasize the importance of including all relevant physical
mechanisms, especially for the modeling of the radio light curves. The
different conclusions for the absorption mechanism (free-free or synchrotron
self-absorption), as well as departures from an CSM, as
inferred by some authors, are discussed in detail. We conclude that the
evidence for a variation in the mass loss rate with time is very weak. The
results regarding the efficiencies of magnetic field generation and
relativistic particle acceleration are summarized.Comment: 10 pages, 2 figures. Uses svmult.cls. To appear in proceedings of IAU
Colloquium 192 "Supernovae (10 years of SN 1993J)", April 2003, Valencia,
Spain, eds. J. M. Marcaide and K. W. Weile
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
A Bayesian Analysis of the Correlations Among Sunspot Cycles
Sunspot numbers form a comprehensive, long-duration proxy of solar activity
and have been used numerous times to empirically investigate the properties of
the solar cycle. A number of correlations have been discovered over the 24
cycles for which observational records are available. Here we carry out a
sophisticated statistical analysis of the sunspot record that reaffirms these
correlations, and sets up an empirical predictive framework for future cycles.
An advantage of our approach is that it allows for rigorous assessment of both
the statistical significance of various cycle features and the uncertainty
associated with predictions. We summarize the data into three sequential
relations that estimate the amplitude, duration, and time of rise to maximum
for any cycle, given the values from the previous cycle. We find that there is
no indication of a persistence in predictive power beyond one cycle, and
conclude that the dynamo does not retain memory beyond one cycle. Based on
sunspot records up to October 2011, we obtain, for Cycle 24, an estimated
maximum smoothed monthly sunspot number of 97 +- 15, to occur in
January--February 2014 +- 6 months.Comment: Accepted for publication in Solar Physic
Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes and a truncation of a few times 105 . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628
Classification of Supernovae
The current classification scheme for supernovae is presented. The main
observational features of the supernova types are described and the physical
implications briefly addressed. Differences between the homogeneous
thermonuclear type Ia and similarities among the heterogeneous core collapse
type Ib, Ic and II are highlighted. Transforming type IIb, narrow line type
IIn, supernovae associated with GRBs and few peculiar objects are also
discussed.Comment: 16 Pages, 4 figures, to be published in "Supernovae and Gamma-Ray
Bursters," ed. Kurt W. Weile
Dust in Supernovae and Supernova Remnants I : Formation Scenarios
Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
The power of principled bayesian methods in the study of stellar evolution
It takes years of effort employing the best telescopes and instruments to obtain high-quality stellar photometry, astrometry, and spectroscopy. Stellar evolution models contain the experience of lifetimes of theoretical calculations and testing. Yet most astronomers fit these valuable models to these precious datasets by eye. We show that a principled Bayesian approach to fitting models to stellar data yields substantially more information over a range of stellar astrophysics. We highlight advances in determining the ages of star clusters, mass ratios of binary stars, limitations in the accuracy of stellar models, post-main-sequence mass loss, and the ages of individual white dwarfs. We also outline a number of unsolved problems that would benefit from principled Bayesian analyses