1,271 research outputs found

    Self-organization mechanisms for the formation on nearshore crescentic and transverse sand bars

    Get PDF
    The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simpli ed sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the rst time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and ne sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur

    Evolving networks with disadvantaged long-range connections

    Full text link
    We consider a growing network, whose growth algorithm is based on the preferential attachment typical for scale-free constructions, but where the long-range bonds are disadvantaged. Thus, the probability to get connected to a site at distance dd is proportional to d−αd^{-\alpha}, where α\alpha is a tunable parameter of the model. We show that the properties of the networks grown with α<1\alpha <1 are close to those of the genuine scale-free construction, while for α>1\alpha >1 the structure of the network is vastly different. Thus, in this regime, the node degree distribution is no more a power law, and it is well-represented by a stretched exponential. On the other hand, the small-world property of the growing networks is preserved at all values of α\alpha .Comment: REVTeX, 6 pages, 5 figure

    The composition of serous fluid after axillary dissection

    Get PDF
    Objective: To analyse the composition of the serous fluid formed after axillary dissection Design: Descriptive study Setting: University hospital and teaching hospital, The Netherlands Subjects: 16 patients whose axillas were dissected as part of a modified radical mastectomy for stage I or II breast cancer. Main outcome measures: Chemical and cellular composition of axillary drainage fluid on the first, fifth, and tenth postoperative days compared with the same constituents in blood and with reported data on the composition of peripheral lymph. Results and conclusion: On the first postoperative day the drainage fluid contained blood contents and a high concentration of creatine phosphokinase (CPK). After day one it changed to a peripheral lymph-like fluid but containing different cells, more protein, and no fibrinogen, making coagulation impossible. The reduction in the fluid production must be caused by other wound healing processes, such as formation of scars and connective tissue

    Gamma-ray binaries

    Get PDF
    Recent observations have shown that some compact stellar binaries radiate the highest energy light in the universe. The challenge has been to determine the nature of the compact object and whether the very high energy gamma-rays are ultimately powered by pulsar winds or relativistic jets. Multiwavelength observations have shown that one of the three gamma-ray binaries known so far, PSR B1259-63, is a neutron star binary and that the very energetic gamma-rays from this source and from another gamma-ray binary, LS I +61 303, may be produced by the interaction of pulsar winds with the wind from the companion star. At this time it is an open question whether the third gamma-ray binary, LS 5039, is also powered by a pulsar wind or a microquasar jet, where relativistic particles in collimated jets would boost the energy of the wind from the stellar companion to TeV energies.Comment: 4 pages, 3 figures. Invited talk to appear in Proceedings of the conference "The Multi-Messenger Approach to High-Energy Gamma-ray Sources", Barcelona, 4-7 July 200

    Results from MAGIC's first observation cycle on galactic sources

    Full text link
    During its Cycle I, the MAGIC telescope targeted about 250 hours several galactic sources sought to be, or detected previously by other experiments in the same energy domain, gamma-ray emitters. This paper reviews some results of such MAGIC observations covering, among others, supernova remnants, the Galactic Center and microquasars. We will concentrate on the recent discovery at very high energy gamma-rays of the microquasar LS I +61 303.Comment: 6 pages, 8 figures. Prepared for "The Multi-messenger Approach to High-energy Gamma-ray Sources", Barcelona (Spain) 4-7 July 200

    Signatures of small-world and scale-free properties in large computer programs

    Full text link
    A large computer program is typically divided into many hundreds or even thousands of smaller units, whose logical connections define a network in a natural way. This network reflects the internal structure of the program, and defines the ``information flow'' within the program. We show that, (1) due to its growth in time this network displays a scale-free feature in that the probability of the number of links at a node obeys a power-law distribution, and (2) as a result of performance optimization of the program the network has a small-world structure. We believe that these features are generic for large computer programs. Our work extends the previous studies on growing networks, which have mostly been for physical networks, to the domain of computer software.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Correlations in Scale-Free Networks: Tomography and Percolation

    Full text link
    We discuss three related models of scale-free networks with the same degree distribution but different correlation properties. Starting from the Barabasi-Albert construction based on growth and preferential attachment we discuss two other networks emerging when randomizing it with respect to links or nodes. We point out that the Barabasi-Albert model displays dissortative behavior with respect to the nodes' degrees, while the node-randomized network shows assortative mixing. These kinds of correlations are visualized by discussig the shell structure of the networks around their arbitrary node. In spite of different correlation behavior, all three constructions exhibit similar percolation properties.Comment: 6 pages, 2 figures; added reference

    Very high energy observations of the BL Lac objects 3C 66A and OJ 287

    Full text link
    Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we have observed the BL Lac objects 3C 66A and OJ 287. These are members of the class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three LBLs predicted by Costamante and Ghisellini to be potential sources of very high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae, has recently been detected by the MAGIC collaboration. Our observations have not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits assume a Crab-like energy spectrum with an effective energy threshold of 185 GeV.Comment: 24 pages, 15 figures, Accepted for publication in Astroparticle Physic

    Edge overload breakdown in evolving networks

    Full text link
    We investigate growing networks based on Barabasi and Albert's algorithm for generating scale-free networks, but with edges sensitive to overload breakdown. the load is defined through edge betweenness centrality. We focus on the situation where the average number of connections per vertex is, as the number of vertices, linearly increasing in time. After an initial stage of growth, the network undergoes avalanching breakdowns to a fragmented state from which it never recovers. This breakdown is much less violent if the growth is by random rather than preferential attachment (as defines the Barabasi and Albert model). We briefly discuss the case where the average number of connections per vertex is constant. In this case no breakdown avalanches occur. Implications to the growth of real-world communication networks are discussed.Comment: To appear in Phys. Rev.
    • 

    corecore