We investigate growing networks based on Barabasi and Albert's algorithm for
generating scale-free networks, but with edges sensitive to overload breakdown.
the load is defined through edge betweenness centrality. We focus on the
situation where the average number of connections per vertex is, as the number
of vertices, linearly increasing in time. After an initial stage of growth, the
network undergoes avalanching breakdowns to a fragmented state from which it
never recovers. This breakdown is much less violent if the growth is by random
rather than preferential attachment (as defines the Barabasi and Albert model).
We briefly discuss the case where the average number of connections per vertex
is constant. In this case no breakdown avalanches occur. Implications to the
growth of real-world communication networks are discussed.Comment: To appear in Phys. Rev.