3,676 research outputs found

    Physical Baryon Resonance Spectroscopy from Lattice QCD

    Get PDF
    We complement recent advances in the calculation of the masses of excited baryons in quenched lattice QCD with finite-range regulated chiral effective field theory enabling contact with the physical quark mass region. We examine the P-wave contributions to the low-lying nucleon and delta resonances.Comment: Contributed paper at FB17, the 17th International Conference on Few-Body Problems in Physics, Durham, NC, June 5-10, 2003. 3 pages, 6 figure

    WR 110: A Single Wolf-Rayet Star With Corotating Interaction Regions In Its Wind?

    Get PDF
    A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.Comment: 25 pages, 8 figures, 2 tables, accepted in Ap

    Lifetime Effects in Color Superconductivity at Weak Coupling

    Get PDF
    Present computations of the gap of color superconductivity in weak coupling assume that the quarks which participate in the condensation process are infinitely long-lived. However, the quasiparticles in a plasma are characterized by having a finite lifetime. In this article we take into account this fact to evaluate its effect in the computation of the color gap. By first considering the Schwinger-Dyson equations in weak coupling, when one-loop self-energy corrections are included, a general gap equation is written in terms of the spectral densities of the quasiparticles. To evaluate lifetime effects, we then model the spectral density by a Lorentzian function. We argue that the decay of the quasiparticles limits their efficiency to condense. The value of the gap at the Fermi surface is then reduced. To leading order, these lifetime effects can be taken into account by replacing the coupling constant of the gap equation by a reduced effective one.Comment: 16 pages, 2 figures; explanations on the role of the Meissner effect added; 2 references added; accepted for publication in PR

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy

    Full text link
    To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared with the MIDI instrument at the Very Large Telescope Interferometer. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 micron in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk corresponding to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or "clumpy".Comment: 20 pages, 16 figures, accepted for publication by A&

    Coexistence of ferromagnetism and superconductivity

    Full text link
    A comprehensive theory is developed that describes the coexistence of p-wave, spin-triplet superconductivity and itinerant ferromagnetism. It is shown how to use field-theoretic techniques to derive both conventional strong-coupling theory, and analogous gap equations for superconductivity induced by magnetic fluctuations. It is then shown and discussed in detail that the magnetic fluctuations are generically stronger on the ferromagnetic side of the magnetic phase boundary, which substantially enhances the superconducting critical temperature in the ferromagnetic phase over that in the paramagnetic one. The resulting phase diagram is compared with the experimental observations in UGe_2 and ZrZn_2.Comment: 16 pp., REVTeX, 6 eps figs; final version as publishe

    Mesoscopic fluctuations of the ground state spin of a small metal particle

    Full text link
    We study the statistical distribution of the ground state spin for an ensemble of small metallic grains, using a random-matrix toy model. Using the Hartree Fock approximation, we find that already for interaction strengths well below the Stoner criterion there is an appreciable probability that the ground state has a finite, nonzero spin. Possible relations to experiments are discussed.Comment: 4 pages, RevTeX; 1 figure included with eps

    On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models

    Full text link
    Stellar models have been computed for stars having [Fe/H] = 0.0 and -2.0 to determine the effects of using boundary conditions derived from the latest MARCS model atmospheres. The latter were fitted to the interior models at both the photosphere and at tau = 100, and at least for the 0.8-1.0 solar mass stars considered here, the resultant evolutionary tracks were found to be nearly independent of the chosen fitting point. Particular care was taken to treat the entire star as consistently as possible; i.e., both the interior and atmosphere codes assumed the same abundances and the same treatment of convection. Tracks were also computed using either the classical gray T(tau,T_eff) relation or that derived by Krishna Swamy (1966) to derive the boundary pressure. The latter predict warmer giant branches (by ~150 K) at solar abundances than those based on gray or MARCS atmospheres, which happens to be in good agreement with the inferred temperatures of giants in the open cluster M67 from the latest (V-K)-T_eff relations. Most of the calculations assumed Z=0.0125 (Asplund et al.), though a few models were computed for Z=0.0165 (Grevesse & Sauval) to determine the dependence of the tracks on Z_\odot. Grids of "scaled solar, differentially corrected" (SDC) atmospheres were also computed to try to improve upon theoretical MARCS models. When they were used as boundary conditions, the resultant tracks agreed very well with those based on a standard scaled-solar (e.g., Krishna Swamy) T(tau,T_eff) relation, independently of the assumed metal abundance. Fits of isochrones to the C-M diagram of the [Fe/H] = -2 globular cluster M68 were examined, as was the possibility that the mixing-length parameter varies with stellar parameters.Comment: 54 pages, including 20 figures and 3 tables; accepted (July 2007) for publication in the Astrophysical Journa

    B --> pi and B --> K transitions in partially quenched chiral perturbation theory

    Full text link
    We study the properties of the B-->pi and B-->K transition form factors in partially quenched QCD by using the approach of partially quenched chiral perturbation theory combined with the static heavy quark limit. We show that the form factors change almost linearly when varying the value of the sea quark mass, whereas the dependence on the valence quark mass contains both the standard and chirally divergent (quenched) logarithms. A simple strategy for the chiral extrapolations in the lattice studies with Nsea=2 is suggested. It consists of the linear extrapolations from the realistically accessible quark masses, first in the sea and then in the valence quark mass. From the present approach, we estimate the uncertainty induced by such extrapolations to be within 5%.Comment: Published versio

    Chiral perturbation theory for K+ to pi+ pi0 decay in the continuum and on the lattice

    Full text link
    In this paper we use one-loop chiral perturbation theory in order to compare lattice computations of the K+ to pi+ pi0 decay amplitude with the experimental value. This makes it possible to investigate three systematic effects that plague lattice computations: quenching, finite-volume effects, and the fact that lattice computations have been done at unphysical values of the quark masses and pion external momenta (only this latter effect shows up at tree level). We apply our results to the most recent lattice computation, and find that all three effects are substantial. We conclude that one-loop corrections in chiral perturbation theory help in explaining the discrepancy between lattice results and the real-world value. We also revisit B_K, which is closely related to the K+ to pi+ pi0 decay amplitude by chiral symmetry.Comment: 50 pages, TeX, two eps figures included, minor changes, no changes in results or conclusions, version to appear in Phys.Rev.
    • …
    corecore