41,624 research outputs found
Statistics of some atmospheric turbulence records relevant to aircraft response calculations
Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included
Radiant heat exchange in a space environment Scientific technical report, 1 Feb. - 31 Jul. 1970
Spectral and directional surface property effects on radiant heat transfer in space environmen
Radiant heat exchange in a space environment Scientific technical report, 1 Aug. 1969 - 31 Jan. 1970
Spectral surface property effects on radiant heat transfer in aerospace environmen
Preliminary results of aerial infrared surveys at Pisgah Crater, California
In-flight tests of airborne infrared scanners, and comparison with field reflectance dat
Free-induction decay and envelope modulations in a narrowed nuclear spin bath
We evaluate free-induction decay for the transverse components of a localized
electron spin coupled to a bath of nuclear spins via the Fermi contact
hyperfine interaction. Our perturbative treatment is valid for special
(narrowed) bath initial conditions and when the Zeeman energy of the electron
exceeds the total hyperfine coupling constant : . Using one unified
and systematic method, we recover previous results reported at short and long
times using different techniques. We find a new and unexpected modulation of
the free-induction-decay envelope, which is present even for a purely isotropic
hyperfine interaction without spin echoes and for a single nuclear species. We
give sub-leading corrections to the decoherence rate, and show that, in
general, the decoherence rate has a non-monotonic dependence on electron Zeeman
splitting, leading to a pronounced maximum. These results illustrate the
limitations of methods that make use of leading-order effective Hamiltonians
and re-exponentiation of short-time expansions for a strongly-interacting
system with non-Markovian (history-dependent) dynamics.Comment: 13 pages, 9 figure
A Third Planet Orbiting HIP 14810
We present new precision radial velocities and a three-planet Keplerian orbit
fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck
Observatory as part of the N2K Planet Search Project. Wright et al. (2007)
announced the inner two planets to this system, and subsequent observations
have revealed the outer planet planet and the proper orbital solution for the
middle planet. The planets have minimum masses of 3.9, 1.3, and 0.6 M_Jup and
orbital periods of 6.67, 147.7, and 952 d, respectively. We have numerically
integrated the family of orbital solutions consistent with the data and find
that they are stable for at least 10^6 yr. Our photometric search shows that
the inner planet does not transit.Comment: ApJL, accepte
Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen
We demonstrate a novel compact solid-state laser source for high-resolution
two-photon spectroscopy of the transition in atomic hydrogen. The
source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a
tapered amplifier, and two doubling stages. The diode laser is actively
stabilized to a high-finesse cavity. We compare the new source to the stable
486 nm dye laser used in previous experiments and record 1S-2S spectra using
both systems. With the solid-state laser system we demonstrate a resolution of
the hydrogen spectrometer of 6 \times 10^{11} which is promising for a number
of high-precision measurements in hydrogen-like systems
A new chiral electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
We report the observation of sum-frequency signals that depend linearly on an
applied electrostatic field and that change sign with the handedness of an
optically active solution. This recently predicted chiral electro-optic effect
exists in the electric-dipole approximation. The static electric field gives
rise to an electric-field-induced sum-frequency signal (an achiral third-order
process) that interferes with the chirality-specific sum-frequency at
second-order. The cross-terms linear in the electrostatic field constitute the
effect and may be used to determine the absolute sign of second- and
third-order nonlinear optical susceptibilities in isotropic media.Comment: Submitted to Physical Revie
An Introduction to Conformal Ricci Flow
We introduce a variation of the classical Ricci flow equation that modifies
the unit volume constraint of that equation to a scalar curvature constraint.
The resulting equations are named the Conformal Ricci Flow Equations because of
the role that conformal geometry plays in constraining the scalar curvature.
These equations are analogous to the incompressible Navier-Stokes equations of
fluid mechanics inasmuch as a conformal pressure arises as a Lagrange
multiplier to conformally deform the metric flow so as to maintain the scalar
curvature constraint. The equilibrium points are Einstein metrics with a
negative Einstein constant and the conformal pressue is shown to be zero at an
equilibrium point and strictly positive otherwise. The geometry of the
conformal Ricci flow is discussed as well as the remarkable analytic fact that
the constraint force does not lose derivatives and thus analytically the
conformal Ricci equation is a bounded perturbation of the classical
unnormalized Ricci equation. That the constraint force does not lose
derivatives is exactly analogous to the fact that the real physical pressure
force that occurs in the Navier-Stokes equations is a bounded function of the
velocity. Using a nonlinear Trotter product formula, existence and uniqueness
of solutions to the conformal Ricci flow equations is proven. Lastly, we
discuss potential applications to Perelman's proposed implementation of
Hamilton's program to prove Thurston's 3-manifold geometrization conjectures.Comment: 52 pages, 1 figur
The "Rail-Unloading" Problem
The "Rail-Unloading" Problem deals with a heavy beam of infinite or semi-infinite length, which is placed on both sides of a supporting point on planes with different levels. Analytical expressions for the contact lengths on both sides of the supporting point as well as for the maximum bending moment are presented
- …