We introduce a variation of the classical Ricci flow equation that modifies
the unit volume constraint of that equation to a scalar curvature constraint.
The resulting equations are named the Conformal Ricci Flow Equations because of
the role that conformal geometry plays in constraining the scalar curvature.
These equations are analogous to the incompressible Navier-Stokes equations of
fluid mechanics inasmuch as a conformal pressure arises as a Lagrange
multiplier to conformally deform the metric flow so as to maintain the scalar
curvature constraint. The equilibrium points are Einstein metrics with a
negative Einstein constant and the conformal pressue is shown to be zero at an
equilibrium point and strictly positive otherwise. The geometry of the
conformal Ricci flow is discussed as well as the remarkable analytic fact that
the constraint force does not lose derivatives and thus analytically the
conformal Ricci equation is a bounded perturbation of the classical
unnormalized Ricci equation. That the constraint force does not lose
derivatives is exactly analogous to the fact that the real physical pressure
force that occurs in the Navier-Stokes equations is a bounded function of the
velocity. Using a nonlinear Trotter product formula, existence and uniqueness
of solutions to the conformal Ricci flow equations is proven. Lastly, we
discuss potential applications to Perelman's proposed implementation of
Hamilton's program to prove Thurston's 3-manifold geometrization conjectures.Comment: 52 pages, 1 figur