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1. OBJECTIVES AND SCOPE

Studies are being conducted to develop analytical methods for

predicting radiant heat transfer and temperature of engineering sur-

faces in a space environment. These studies include two major as-

pects. First, by thoroughly investigating the influence of direc-

tional and spectral property dependencies of engineering materials

on radiant heat transfer and temperature by means of detailed analy-

sis, the accuracy of present calculation methods in&y be assessed,

new and improved methods developed, and the surface property data

required to implement the new methods delineated. Second, since

the results of analysis are only as valid as the surface property

models employed, a facility is under development to measure bidirec-

tional reflectance of surfaces with the aim of justifying and refin-

ing a bidirectional reflectance model for metallic engineering sur-

faces.

In Section 2 the progress made during a sixth six-month period

of the contract is summarized and the current status of the research

program reviewed. The anticipated progress for the next six-month

period is discussed in Section 3.

x
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2. CURRENT STATUS

The progress made and current status of the research program

are reviewed under three major categories. Advances in the-theoreti-

cal heat transfer effort are reported in Section 2.1. Section 2.2

is devoted to analytical efforts to establish realistic radiation

property models for engineering surfaces. The progress in the de-

velopment of a bidirectional reflectance measurement facility is re-

viewed in Section 2.3.

2.1 RADIANT HEAT TRANSFER ANALYSIS

2.1.1 Radiant Heat Transfer for Non-gray, Non-diffuse Surfaces
i n a Space Environment

Calculations which account for real surface property.

effects on radiant heat transfer and equilibrium temperature for

interacting surfaces in a space environment have been completed.

The results are being compared to calculations employing simple sur-

•face property models for radiative transfer. The comparison is pro-

' viding a means for assessing the extent to which present design tech.

niques account for real surface effects and estimates of the magni-

tude of the error in heat flux and equilibrium temperature incurred

by the use of simple property models. The real surface calculations

also point outthe level of, radiation surface property detail required

in radiant heat transfer calculations to assure acceptable design

accuracy and delineate the surface property measurements necessary

to implement improved thermal design methods

2
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Numerical resultss for radiant heat transfer in the absence of

a solar flux and for equilibrium temperature of radiatively adiabatic

surfaces in a solar field have been evaluated. Sihilar results have

been obtained for simple surface property models and compromise models

which attempt to retain the computational simplicity of simple models,

yet partially account for important real surface characteristics.

The details of the calculations and the resulting conclusions are

the subject of a forthcoming report. Upon completion, this report

will be submitted under separate cover..	 f•

2.1.2 Radiant Neat Transfer and Equilibrium Temperature of

Surfaces with One-dimensional Roughness

Apparent thermal radiation properties for surfaces with

oneLdimensional V-groove roughness elements have been developed El,

2,311. These properties were derived employing concepts of geomet-

rical optics and apply for optical roughness values in excess of

unity. Analysis is underway to utilize the apparent properties to

'study the influence of directional emission and reflection on heat

transfer and on equilibrium temperature of surfaces in a space en-

vironment. Studies are in various stages of completion for bath

isolated surfaces and systems of radiatively interacting surfaces.

These studies complement those cited in Section 2.1.1 which employ

a bidirectional reflectance model appropriate to surfaces with small

optical roughness.

tNumbers in brackets refer to entries in REFERENCES.

3
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2.1.2.1 Isolated Surfaces

In an earlier report [21, preliminary results il-

lustrating the influence of surface roughness on heat transfer and

on the temperature acquired by an isolated radiatively adiabatic

surface in a solar flux were presented. Two manuscripts were pre

• pared and subsequently published [4,51. Since details are availa-

ble in the articles, emphasis is given here to the presentation of

typical results and the conclusions drawn from these studies.

The ratio of equilibrium temperature of a rough surface, Tx,

to equilibrium temperature of a smooth surface of identical constitu-

ent material, TS , is illustrated in Fig, 1 as a function of dimen

sionless direction of incident energy 6 1 /(X/2). Typical apparent

properties of the rough surface are .illustrated in the insert for

material -emittance (e ) and solar absorptance (0), values of 0.1 and•	 w	 w

0.9. The results of Fig. 1, as well as others [41, demonstrate that

lar+ge. QrroN in,equi•1ivclme6pture can result if the influence

of surface roughness on thermal radiation properties is ignored.

Complete neglect of surface roughness yields temperatures which vary

from 34 percent lower to 18 percent higher than those acquired by

'the rough surface. Surface roughness effects are particularly im-

portant for surfaces with small and large values of W*1C	 The de-w w

pendence of equilibrium temperature on direction of ,incident energy

is particularly severe for surfaces of low solar absorptance and,

for the most part, negligible for surfaces of high solar absorptance.

4
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Dimensionless radiant heat transfer, q/aT 4 , from a rough surface

with apparent emittance eff and direction dependent apparent solar

absorpiancn, a^^(6') in a solar field of solar constAnt $ is presented

in Fig. 2 for material property values 0.1 and 0,9. The parameter

S* (= SkT4 ) is a dimensionless energy ratio characterizing the rela-

tive magnitude of solar flux to surface emission rate. Results il-

lustrated in Fig. 2 demonstrate that surface roughness can signifi-

cantly influence radiant heat transfer rates. When roughness is

completely neglected and fluxes are evaluated using material prop-

erty values, the discrepancy between values so calculated and. those

which fully account for .roughness can be orders of magnitude when

2
the dimensionless fluxes are less than unity. For dimensionless

flux values ,greater in absolute value than unity, the difference

exceeds 10 percent. Surface roughness effects are particularly im-

portant for low emittance surfaces when emission is dominant, low

solar absorptance materials when incident flux is dominant, and for

materials 'with a'/E: near unity in situations wl, ,e^.re emission rate
W w

and incident flux are comparable. The use of apparent emittance

and normal solar absorptance for all directions of incident energy

yields results in excellent agreement with rough surface flues ex-

cept for rtiaterials of low solar absorptance in solar flux, dominated

situations at intermediate directions of incidence.

2.1.2,2 Interacting Surfaces

Analysis and numerical results have been completed'

describing the influence of one-dimensional :surface roughness on

f..

ft
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radiant heat transfer for interacting surfaces in the absence of

external radiation fields. Two simple systems of surfaces were se-

lected for study. Results for the adjoltit plate system were summa-

rized in an earlier report; [63. A manuscript was prepared describ-

ing the details of the analysis and results [7] and was recently

accepted for publication in a technical journal. Reprints of the

article will be submitted to JPL upon receipt. Results for the par-

allel plate system illustrated in Fig. 3 were also obtained and a

manuscript :based on this study was recently acceptod for publication

[8]. 'typical results and a short summary of important conclusions

from this study are presented next.
2

Dimensionless radiant heat flux distributions evaluated from

the rough.surface analysis, as well as from the less detailed analy-

sis required for simpler property models, are illustrated in Fig. 4

for a low emittance material and selected values for the spacing

parameter h/!Z; Results obtained using the diffuse emi.ss.a.on-diffuse

reflection model which ignores directional dependence of properties

are denoted CD (constant diffuse). If 'reflection is considered specu

lap , the corresponding results are denoted CS (constant specular).

Radiant flux distributions were obtained for the direction indepen-

dent property models employing hemispherical emittance values EN

given by rough surface material emittance a and rough surface ap
W

parent emittance e	 Constant property results based on wall emit-
a

Lance completely neglect the influence of roughness on surface prop-

erties and, hence, heat transfer. Constant property results obtained

r
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using apparent cmittance acs!Dunt for the influence of surface rough-

ness on the magnitude of energy emission and reflection, but disregard

roughness 'influences on the spatial distribution of emitted and - re-

flected energy,

Consider first ythe results for small spacing. At the plate

edge CD analyses using wall emittance yield fluxes which are low

by N percent for a surface with specularly reflecting asperities

of small slope and by a factor of two for a surface with diffusely

reflecting elements of large slope. CS analysis with e W is even

poorer. As XA * increases, the constant property model flux results

approac%. -*-,atersect, and finally, exceed rough surface fluxes at

the plate center where CD results are high by 40 percent. CS results

are even less accurate near the plate center. Flux distributtons

valuated with diffuse analysis and apparent hemispherical :Miftance

most closely approximate those of the rough surfaces. Although CD

analysis with e 
a
 reduces the edge flux error to an acceptable level

(maximum 10 percent), no significant improvement occurs at the plate

:center. For intermediate h/Z values, the rough surface flux distri-

butions generally are intermediate to those calculated 'with diffuse

analysis using wall emittance and apparent emittance. While diffuse

analysis with apparent emittance appears to yield the best approxi-

mation to the flux results for surfaces with diffusely reflecting

roughness elements, neither diffuse nor specular analysis adequately

approximates the flux distribution for surfaces with specularly re-

fleeting elements, particularly for the surface with larger roughness

7
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slope. For h/I = 1.0, CD analysis with ea yields results which dif-

fer imperceptibly from those for the surface with d (fuse elements

and 900 inrl.uded angle. Agreement is acneptable for. the surface

with diffuse elements of the smaller ..included angle also. Again,

however, the rough surface flux distribution for specularly reflect-

ing roughness elements is poorly represented by the results of con-

stant property analysis. The trends observed for w = 0.1 are evi-

dent, but to a lesser degree for the intermediate wall eriittance

surface. Diffuse analysis with rout' 'surface apparent hemispheri-

cal emittance yields flux distributions in good agreement with rough

surface result: throughout the entire range of values for the spac-

ing parameter when wall emittance is'large.

The following conclusions may be drawn from the radiant heat

transfer results. Surface roughness effects are relatively unimpor-

tarot 'for high. emittance materials (s w > 0.9) The influence of sur-

face roughness on radiant transfer steadily increases as material

emittance values diminish. Surface roughness slope is the more domi-

Want rough surface parameter influencing radiant transfer. For low

emittance 'materials surface roughness can alter local flux by 50

percent and 'total heat transfer by a factor of two. Comparison of

rough surface heat flux distributions to those evaluated with sim-

ple surface property models demonstrated that neither diffuse nor

specular, analysis can consistently approximate the rough surface

results over the range of values considered for the radiant interac-

tion parameter h/k. Overall, diffuse analysis with rough surface

8
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apparent emittance gave the batter representation although local

flux discrepancies as large as 50 percent and more were not uncom-

mon. Rough surface total heat transfer was accurately predicted

(within 3 percent) by diffuse analysis employing rough surface- ap-

parent emittance. This excellent agreement deteriorated rapidly

as material emittance decreased.

The analyses briefly described •abuve have. been extended to in -

clude evaluation of local and overall radiant interchange factors.

These factors are important for calculation of net radiant energy

^h transfer between interacting surfaces and for describing radiant

transfer between surfaces when other energy transfer modes, such

as conduction and convection, are present,, Computations have been

completed, but the results require further study.-

Analysis was completed which extends -that developed for the

adjoins plate system to include solar flux and, hence, evaluation

-of surface roughness effects on equilibrium temperature of radiatively

adiabatic interacting surfaces. Numerical results are being obtained,

but are not yet sufficient in quantity to report any conclusions.

2.1.3 Spectral Surface Property Effects on Radiant Transfer
a

An analysis has been cbmpleted which provides a mecha-

nism for study of spectral surface property effects on radiant heat

transfer between radiatively interacting surfaces. The system of

surfaces initially chosen for study is the adjoint plate system in

the absence of external thermal eradiation fields. One of the purposes

0
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of this analysis is to provide information which can be utilized

to delineate the relative importance of spectral and directional

real surface property dependencies. 	 Furthermore, additional infor-

mation is required to ascertain the magnitude of the error incurred

in gray and semigray methods of analysis.

Numerical results were recently acquired for identical uniform

property adjoint plates.	 Roberts' expressions [9] were employed

to describe the wavelength dependence of the optical parameters.in

the relations of electromagnetic theory for hemispherical emittance

[101.	 Initial study was restricted to tungsten for which Roberts

reported values of the empirical constants which gave good agreement

with spectral hemispherical emittance data.	 Dimensionless radiant

flux distributions are illustrated in Fig. 5 for equal temperature

diffuse tungsten surfaces at a temperature of 1980 0R.	 Differences

between local gray and nongray heat flux values are of the order

of 5 percent and are a weak function of location on the surfaces.

- As•a consequence of the last observation, most trends related to

spectral dependence of properties may be studied by comparing gray

and nongray heat :Flux values at a s ,+lected location on the surfaces.

The common edge (x/L = 0) is convenient because the spectral heat

flux may be evaluated from analytical expressions for diffusely emit-.
4 

	 _,

ting surfaces described by a direction independent specular-diffuse

reflection model. i
t Dimensionless corner heat flux values, q(0)/o•T4 , evaluated from

nongray and gray analyses are compared in Fig. 6 for equal temperature

r
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plates. Results are shown for diffusely reflecting surfaces (p /'p = 0.^ ^;

specularly reflecting surfaces (p /p = 1.0), and surfaces of inter-

mediate specularity (p /p 0.5) over = a large temperature range. 	 .

Corner flux values evaluated with th., gray spectral model are in

error by a maximum of approximately 6 percent at intermediate terr,-

peratures of 2000-30000 R. The magnitude of the error in gray results

is relatively independent of the reflection model.

For the material and temperature range considered, the differ-

ence between corner heat flux values calculated on the basis of a

gray and nongray spectral model for properties is small. Branstetter

[111 also reported relatively small differences for parallel tungsten

plates when the difference in temperature between the plates was

small. When large temperature differences were involved, however,

Branstetter observed large discrepancies in gray and nongray radi-

ant transfer rates. The analysis for the adjoint plate system was

extended to unequal temperature plates in order to investigate whether

a similar observation could be made for this system. Typical cor-

ner heat flux results are presented in Fig. 7 for the'adjoint plate

system with the higher temperature plate at a temperature of 43200R.

The'temperature of the adjacent surface was varied from 536 0R to the

temperature value of the hotter surface. In agreement with Branstetter's

findings, the results of Fig. 7 establish that the gray spectral

property model gives poorer agreement with nongray analysis as

the temperature difference between the surfaces increases. It 'may

also be noted that the lower temperature plate is more sensitive

to the spectral dependence of properties

11 t^
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The analyses and results briefly discussed in this section are

t
being extended to include other materials and spectral property models.

Other extensions of the ana,lysds under consideration include studies

which account for both spectral and directional property dependence

as well as influences of spectral property dependence on equilibrium

temperature.

2.2 RADIATION PROPERTY ANALYSIS

The study of apparent radiation properties of surfaces with

one-dimensional'roughness elements [3] *"inch was presented at the

AI:AA Fourth Thermophysics Conference will be published in the AIAA

Series, Progress in Astronautics and Aeronautics: ThermophZsics

42plication to Thermal Design of Spacecraft. Reprints of the arti-

cle will be submitted to JPL upon receipt.

2.3 BIDIRECTIONAL REFLECTANCE MEASUREMENT FACILITY

Plane of incidence bidirectional reflectance measurements pre-

viously reported [6] indicated that certain modifications to the

facility were necessary. The modifications initiated are designed

to

(1) eliminate an erratic reference signal from the monochr:oma
for chopper assembly,

(2) reduce mirror alignment and wavelength-drum calibration
difficulties of the system,

(3) extend capability to continuous angle scanning, and

(4) implement automatic acquisition and reduction of reflec-
tance data.}	 a

12
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The design changes are in various stages of completion and are dis-

cussed in the remainder of this section.

Problems attributed to the erratic Deference signal from the

internal chopper of the monochromator were eliminated by two design

modifications. First, the chopper motor supplied with the monochroma-

tor was replaced with a synchronous motor and the drivsr pulley was

redesigned so that the chopper and amplifier operate at the same

frequency. Second, the mechanical cam system of the monochromator

which furnishes a reference signal to the amplifier was replaced
f'

with a photodiode system. The redesigned reference signal unit con-

sists of a-stationary narrow light beam, a semicircular blade attached

to the chopper shaft, and a stationary photodiode. As the shaft

rotates, the blade internipts the light beam which is focused on the

photodiode. The photodiode transforms the alternating light beam

signal to an alternating electrical voltage signal which triggers

the amplifier. The above design modifications have been completed

and the erratic reference signal eliminated so that now the amplifier

is able to lock--on to the reference signal.'

Design modifications were initiated to reduce the'difficulty

in calibration of the monochromator wavelength drum drive. A 200

step per revolution stepping motor purchased from Superior Electric

Company was attached to the wavelength drum shaft. One step of the

motor corresponds to 0.005 drum divisions. A two axis indexer ac -

quired from the same vendor drives this motor, as well as the angle

scan motor discussed below. These design changes have been completed
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and subsequent use of the equipment has demonstrated significant 	 .

reduction in the time required for wavelength drum calibration, as

well as substantial .improvement in repeakabili.ty and accuracy of

drum calibration.

Alignment of illuminating and detecting optics of the reflec-

tance facility has been a particularly difficult procedure. As a

result, the illuminating and detecting optical systems have been

modified to that schematically illustrated in Figs. 8 and 9. As

with the original design [2], the illuminating optical system consists

of a radiant energy source, a plane mirror, and a spherical mirror.

T	 Supports for these components were redesigned to reduce alignment

difficulties. All supports are attached to the source arm. In or-

der to provide capability for continuous scanning over the direction

of reflected energy (0 angle in Fig. 8), the detecting optical sys-

tem. is suspended from an arm rigidly attached to the monochromator.

The optics consists of.two plane mirrors and a spherical mirror which

is interchangeable with other spherical mirrors. Supports for these

mirrors are positioned so that interference with the illuminating

optics supports is eliminated as the source arm is rotated. Six

spherical mirrors were purchased and these enable selection of 0.001535,

1 0.00307, or 0.00514 steradian solid angle for study of the influence

of solid angle size on measurements. The angles of incidence (01)

and reflection (0) are set by the use of the rotary table assembly

[2]. Direction of incident energy on the sample is manually adjusted

with the upper rotary table. A 200 step per revolution stepping

14
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motor recently purchased is employed to scan over direction of re-

flected energy by driving the lower rotary table through a speed

reducer. One step of the motor is equi,,alent to 0.01 degree change

in the direction of reflected energy. The .indexer previously men-

tioned drives the stepping motor for angle scan. Although all re-
design has been completed, not all components have been constructed.

A Hewlett-Packard Model 2012B digital data acquisition system

with magnetic tape recorder was recently received on a loan basis

from JPL. The system was subsequently checked out by qualified per-

sonnel from -the vendor. Since the available IBM 360 computer fal,;;ility

requires a nine track tape, the seven track tape of the digital data

acquisition system must be translated from the seven track to nine

track tape before computer processing of data can be accomplished.

Procedures have been developed to effect this translati=on. A com-

pute', code converts the translated data on the nine track tape to

a format compatible with the available computing facility. This

code has been written and verified. Additional features incorpora-

ted into the data reduction-code include the storage of converted

data onto a disk file from which it can be operated on or plotted.

Since the indexer for scanning over wavelength and direction

of reflected energy and the data acquisition system are independent

units, it was necessary-to design an interface between these systems.

A schematic diagram of the interface control system is illustrated

in Fig. 10. The system desi.gnedt uses integrated circuits, but

tThe assistance of Professor W. E. Bair, Department of Mechanical
and Industrial Engineering, University of Illinois at Urbana-Champaign,
in designing the circuitry is gratefully acknowledged.

15
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otherwise standard electrical components. Although component lay-

out has not been finalized, the operational characteristics of the

system have been formulated. The control system consists of a re-

Corder control, wavelength drive control, and angle scan control.

The recorder includes a start circuit, amplifier response delay cir-

cuit, encode.^, and background measurement control circuit. The de-

lay circuit is designed so that a pulse at A or B (see Fig. 16) is

delayed for a time interval directly related to amplifier response.

This provision enables the amplifier to fully respond to a change

in level of the voltage signal from the detector. The encoder has

_	 been designed to include the capability of recording amplifier volt-

age signal with the data acquisition system up to ten times. This

feature provides a mechanism for averaging the signal when noise

levels are high. Upon completion of the encoding operation, a pulse

is given to the background unit where a switch has been incorporated

to distinguish whether a background signal is to be recorded or the

unit is to be bypassed. In the background mode of operation, a pulse

'is available at S to trigger a shutter which eliminates sample it

lumination by the radiation source. Simultaneously, a,pulse to B

triggers the amplifier delay unit. After having recorded the back-

ground signal, a pulse is provided at C. This pulse is transferred

to either the wavelength drive control unit or the angle scan con-

trol unit depending.on the setting of the function switch. In ei-

ther unit, a counter and corresponding stepper motor are then acti-

vated and either the wavelength or angle of reflection is incremented

16
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the desired number of steps. After incrementing, a pulse is availa-

ble at B to repeat the process which is then continued until measure-

ments have been acquired over the entire range of wavelength and/

or angle of reflection. The circuitry for the interface system has

been developed and is under construction..
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Future efforts in theoretical studies will concentrate First .

on the completion of the real surface radiant transfer study utiliz-

ing the detailed bidirectional reflectance models. 	 Details of the

analysisV, quantitative results, and the important conclusions drawn

from this study are being documented in an extensive report devoted

entirely to this investigation. 	 This report is nearing completion

and will be submitted shortly.

Theoretical studies of surface roughness effects on radiant

..^	
heat transfer and equilibrium temperature of grooved surfaces will

continue.	 Computations of real surface local and overall radiant

interchange factors for both the adjoa.nt plate system and the paral-

lel plate system are nearing completion and will delineate the in-

fluence of surface roughness on radiant interchange for systems of

surfaces of widely different character. 	 Subsidiary analyses and com-

putations are underway to investigate the accuracy of simple reflec-

• tion models-in predicting real surface radiant transfer. 	 Results

are also being realized for, the extended real surface analysis which

includes solar flux. 	 This study will permit evaluation of surface

roughness effects on equilibrium temperature distribution. 	 All the

above cited efforts are expected to be completed within the next

six-month contract period.	 Studies of the influence of spectral

dependence of surface properties on radiant heat transfer and equili-

3
brium temperature will be continued.

18 ^^+
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Upgrading of the bidirectional reflectance facility to (1) au-

tomatically scan over all directions of reflected energy in the plane

of incidence, (2) automatically scan over the wavelength region of

interest, and (3) fully utilize the capabilities of the data acqui-

sition system as expected to be completed shortly. Bidirectional

reflectance measurements in the plane of incidence for surfaces with

weli-defined characteristics, as well as other selected samples,

will commend, upon completion of system improvements.

,
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5.	 FIGURES

Figure 1. Surface roughness effects on equilibrium 'temperature
(X = 450)

Figure 2. Surf-ace roughness effects on radiant heat transfer (S* 1,0)

Figure 3. Schematic diagram of parallel plate system

Figure 4. Comparison of dimensionless radiant flux distributions
(ew

Figure 5. Comparison of dimensionless radiant flux distributions
for equal temperature diffuse Tungsten plates (y = 1150,
T = 19800R)

Figure 6. Comparison of nongray and gray dimensionless corner heat
flux values for equal temperature tungsten plates (y = 450)

Figure 7. Comparison of nongray and gray corner heat flux values
for unequal temperature tungsten plates (Y = 4502 Tit = 4320OR)

Figure 8. Schematic diagram of plane of incidence bidirectional
reflectance moasurement facility--top view

Figure 9. Schema-tic diagram of plane of incidence bidirectional
- reflectanco measurement facility--side view

Figure 10. Schematic diagram of control system
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