44 research outputs found

    Structure of the quartetting ground state of N=ZN=Z nuclei

    Full text link
    The formal equivalence between the quartetting picture and the symmetry restored BCS picture is established for the ground state correlations induced by the general isovector-isoscalar pairing interaction. Multiple ground state structures compatible with the particle number and isospin symmetries are evaluated. The competition of isovector and isoscalar correlations is discussed for the N=ZN=Z nuclei above 100^{100}Sn.Comment: 5 pages, 1 figur

    Activation of ERAD Pathway by Human Hepatitis B Virus Modulates Viral and Subviral Particle Production

    Get PDF
    Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections

    First investigation on the isomeric ratio in multinucleon transfer reactions: Entrance channel effects on the spin distribution

    Full text link
    The multinucleon transfer (MNT) reaction approach was successfully employed for the first time to measure the isomeric ratios (IRs) of 211^{211}Po (25/2+^+) isomer and its (9/2+^+) ground state at the IGISOL facility using a 945 MeV 136^{136}Xe beam impinged on 209^{209}Bi and nat^{\rm nat}Pb targets. The dominant production of isomers compared to the corresponding ground states was consistently revealed in the α\alpha-decay spectra. Deduced IR of 211^{211}Po populated through the 136^{136}Xe+nat^{\rm nat}Pb reaction was found to enhance \approx1.8-times than observed for 136^{136}Xe+209^{209}Bi. State-of-the-art Langevin-type model calculations have been utilized to estimate the spin distribution of an MNT residue. The computations qualitatively corroborate with the considerable increase in IRs of 211^{211}Po produced from 136^{136}Xe+nat^{\rm nat}Pb compared to 136^{136}Xe+209^{209}Bi. Theoretical investigations indicate a weak influence of target spin on IRs. The enhancement of the 211^{211}Po isomer in the 136^{136}Xe+nat^{\rm nat}Pb over 136^{136}Xe+209^{209}Bi can be attributed to the different proton (pp)-transfer production routes. Estimations demonstrate an increment in the angular momentum transfer, favorable for isomer production, with increasing projectile energy. Comparative analysis indicates the two entrance channel parameters, projectile mass and pp-transfer channels, strongly influencing the population of the high-spin isomer of 211^{211}Po (25/2+^+). This is the first experimental and theoretical investigation on the IRs of nuclei produced via different channels of MNT reactions, with the latter quantitatively underestimating the former by a factor of two.Comment: 5 figure

    Mass measurements of As, Se and Br nuclei and their implication on the proton-neutron interaction strength towards the N=Z line

    Get PDF
    Mass measurements of the nuclides 69As, 70,71Se, and 71Br, produced via fragmentation of a 124Xe primary beam at the Fragment Separator (FRS) at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1000000. Such high resolving power is the only way to achieve accurate results and resolve overlapping peaks of short-lived exotic nuclei, whose total number of accumulated events is always limited. For the nuclide 69As, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only ten events. For the nuclide 70Se, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of δm/m=4.0×10−8, with less than 500 events. The masses of the nuclides 71Se and 71Br have been measured with an uncertainty of 23 and 16 keV, respectively. Our results for the nuclides 70,71Se and 71Br are in good agreement with the 2016 Atomic Mass Evaluation, and our result for the nuclide 69As resolves the discrepancy between the previous indirect measurements. We measured also the mass of the molecule 14N15N40Ar (A=69) with a relative accuracy of δm/m=1.7×10−8, the highest yet achieved with an MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction (δVpn) for odd-odd nuclei along the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at the N−Z=2 line, and not evident at the N−Z=4 line. Nevertheless, detailed structure of δVpn along the N−Z=2 and N−Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing ≈500 keV discrepancy in the mass value of the nuclide 70Br, which prevents including it in the world average of Ft value for superallowed 0+→0+β decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the nuclide 70Br.peerReviewe

    Folding of Matrix Metalloproteinase-2 Prevents Endogenous Generation of MHC Class-I Restricted Epitope

    Get PDF
    BACKGROUND: We previously demonstrated that the matrix metalloproteinase-2 (MMP-2) contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope. METHODOLOGY/PRINCIPAL FINDINGS: By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex. CONCLUSIONS/SIGNIFICANCE: These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk
    corecore