3,731 research outputs found

    High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4

    Full text link
    We studied the effects of high-pressure on the crystalline structure of bulk and nanocrystalline scheelite-type PbMoO4. We found that in both cases the compressibility of the materials is highly non-isotropic, being the c-axis the most compressible one. We also observed that the volume compressibility of nanocrystals becomes higher that the bulk one at 5 GPa. In addition, at 10.7(8) GPa we observed the onset of an structural phase transition in bulk PbMoO4. The high-pressure phase has a monoclinic structure similar to M-fergusonite. The transition is reversible and not volume change is detected between the low- and high-pressure phases. No additional structural changes or evidence of decomposition are found up to 21.1 GPa. In contrast nanocrystalline PbMoO4 remains in the scheelite structure at least up to 16.1 GPa. Finally, the equation of state for bulk and nanocrystalline PbMoO4 are also determined.Comment: 18 pages, 4 figure

    A tale of three kingdoms: Members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria

    Get PDF
    Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohisto- chemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ances- tors of the genus Trichinella had an association with terrestrial plants

    Beneficial effects of spices in food preservation and safety

    Get PDF
    Spices have been used since ancient times. Although they have been employed mainly as flavoring and coloring agents, their role in food safety and preservation have also been studied in vitro and in vivo. Spices have exhibited numerous health benefits in preventing and treating a wide variety of diseases such as cancer, aging, metabolic, neurological, cardiovascular, and inflammatory diseases. The present review aims to provide a comprehensive summary of the most relevant and recent findings on spices and their active compounds in terms of targets and mode of action; in particular, their potential use in food preservation and enhancement of shelf life as a natural bioingredient

    Reliability Analysis of a Series and Parallel Network using Triangular Intuitionistic Fuzzy Sets

    Get PDF
    This paper describes a novel approach, based on intuitionistic fuzzy set theory for reliability analysis of series and parallel network. The triangular intuitionistic fuzzy sets are used to represent the failure possibility of each basic (terminal) event to get more comprehensive results for the failure possibility of the top event. The proposed technique is demonstrated on a web server LOG data used to illustrate HTTP (Hyper Text Transfer Protocol) failur

    Biolixiviation des métaux lourds et stabilisation des boues municipales: effet de la forme du souffre élémentaire utilisé comme substrat

    Get PDF
    La présence de concentrations élevées en métaux lourds retrouvés dans les boues de stations d'épuration est un facteur important limitant ainsi leurs différents modes de dispositions (rejet en mer, enfouissement, incinération, ou même recyclage comme fertilisant agricole ou forestier) par crainte de dégâts considérables qui pourraient être causés à l'environnement. L'objectif de ce travail consistait à mettre au point un procédé qui permettrait conjointement la stabilisation des boues municipales et l'enlèvement des métaux lourds qui y sont associés. L'approche poursuivie dans cette étude était de vérifier si ce procédé microbien, conçu pour enlever les métaux lourds associés aux boues municipales, pourrait éventuellement remplacer les procédés conventionnels de stabilisation des boues municipales, ce qui réduirait considérablement les temps et coûts de traitement. Ce procédé microbien consiste à utiliser des souches de thiobacilles qui oxydent le soufre élémentaire, produisant ainsi de l'acide sulfurique, et par la même occasion une forte baisse de pH (1.5). Les résultats obtenus en cultures discontinues, en bioréacteurs, avec des boues primaires provenant de la station d'épuration de la Communauté Urbaine de Québec (C.U.Q.- Est) montrent que cette chute de pH entraîne une solubilisation importante des métaux (Cr: 56 %, Cu: 97 %, Fe: 30 à 40 %, Pb: 69 %, Zn: 98 % ), du phosphore (52 %), ainsi qu'une réduction appréciable des matières volatiles en suspension (40 à 50 % ), et ce, après seulement 7 jours de traitement. Le soufre nécessaire à la biolixiviation- stabilisation est introduit, dans le cas de notre étude, sous forme de granules ou de blocs. Ce choix de la forme de soufre influe beaucoup sur la qualité de la boue produite, ainsi que sur son pouvoir acidophile après neutralisation. Le soufre en blocs s'avère plus efficace et aussi préférable au soufre en granules quant au pouvoir acidophile, après neutralisation, de la boue produite.Given the potential geochemical mobility and recognizd toxicity of heavy metals, their presence at high concentrations in sewage sludges imposes serious limitations on various sludge disposal practices (ocean disposal, landfill, incineration, or use as a fertilizer in agriculture or forestry), The objectve of this work was to develop a process that would permit the simultaneous stabilization of sewage sludges and the removal of heavy metals associated with them. The approach followed was to verify if this microbial leaching procedure could eventually replace conventional sludge stabilization processes and hence considerably reduce the time and cost of treatment. The microbial process consists of using thiobacillus strains which, in the presence of air, oxidize elemental sulfur to sulfuric acid, thus reducing the pH to very acidic levels (pH 1.5). This biological oxidation of elemental sulfur is brought about by two groups of sulfur-oxidizing bacteria, the less-acidophilic and the acidophilic thiobacilli. The initial acid production and pH reduction is due to the less-acidophilic bactena (Thiobacillus thioparus) which lower the pH to about 4.0. This is followed by the growth of acidophilic bacteria (Thiobacillus thiooxidans) and fruther pH reduction.Batch culture experiments were carried out in 30 L and 8 L reactors with primary sludges obtained from the Quebec urban community's wastewater treatment centre. Elemental sulfur and inoculum were added at the beginning of each experiment The inoculum was prepared by adding 1 % tyndalized sulfur powder to fresh secondary sludge and incubating for 8 days (final pH 1.5 to 2.0). A small portion (5 %) of this acidified sludge was then used as an inoculum for another batch of fresh sludge and this process was repeated several times until an acclimatized inoculum was obtained which could oxidize elemental sulfur rapidly, without an appreciable lag phase. The elemental sulfur necessary as substrate for the simultaneous bioleaching and sludge stabilization was introduced in the form of granules (2.4 to 4 mm diameter) or blocks (25 mm diameter).Sludge pH and ORP were measured at 24 hour intervals and all other measurements were carried out at 48 hour intervals. The results demonstrate that the addition of elemental sulfur and inoculum resulted in a considerable lowering of the sludge pH during the incubation period. Such pH lowering was not observed in cultures to which sulfur and inoculum were not added. This lowering of pH (2.1) was related to the quantity of substrate (sulfur) and inoculum present in the medium. An increase in the medium ORP (from -50 to about 500 mV) was also observed. Acidification of the medium along with the elevated ORP levels resulted in the solubilization of metals initially present in the sludge. This pH reduction, after only 7 days of treatment, effected an important metal solubilization (Cr: 56 %, Cu: 97 %, Be: 30-40 %, Pb: 69 %, Zn: 98 %), as well as an appreciable reduction in phosphorus (52 %) and in the volatile suspended solids concentration (40-50 %). In addition, the sludge which initially had a highly repulsive odour was rendered odourless.In a previous study we had showm that for an optimum rate of acidification of the sludge a minimum concentration of elemental sulfur (2 g/L) was necessary, even though only 40 % of this sulfur was oxidized. In the present experiment the physical form of the sulfur was shown to influence both the quality of sludge produced and its acid-generating capacity after neutralization. Sulfur in the form of blocks was more efficient than granules in that the elemental sulfur could be readily separated from the sludge at the end of the treatment, yielding a sludge after neutralization that had a low acid-generating capacity. In the case of granules, the unused sulfur was broken down into a fine powder during the course of the bioleaching experiment and could not be separated from the leached sludge - even after neutralization, the leached sludge exhibited a high acid-generating capacity, which would limit its use as a fertilizer on agricultural land

    Triplication of Deciduous Teeth: A Rare Dental Anomaly

    Get PDF
    Fusion of teeth is the union of two or more tooth germs, which are usually separated. Depending upon the stage of odontogenesis, it can be complete or incomplete. The present case describes fusion between the maxillary  primary right central and lateral incisor with a supernumerary tooth. Clinical and radiographic examination revealed the presence of fused triple teeth. The fused teeth were extracted, sectioned and were visualized under  stereomicroscope at three levels and the diagnosis of fusion of three teeth was confirmed histologically.Keywords: Fusion, primary teeth, supernumerary tooth, triple teet

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance
    corecore