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A tale of three kingdoms: members of the
Phylum Nematoda independently acquired the
detoxifying enzyme cyanase through horizontal
gene transfer from plants and bacteria

D. S. Zarlenga1, M. Mitreva2, P. Thompson1, R. Tyagi2, W. Tuo1 and E. P. Hoberg1

1USDA, Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD 20705 USA and 2The Genome
Institute, Washington University School of Medicine, St. Louis, MO 63108, USA

Abstract

Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes.
Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is
present in more than 35 members of the Phylum Nematoda, but absent from free-living and
clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms
Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a
well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within
the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are
homologous to those of bacteria. Western blots exhibited typical multimeric forms of the
native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohisto-
chemical staining localized the protein to the worm hypodermis and underlying muscle.
Recombinant Trichinella cyanase was bioactive where gene transcription profiles support
functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes
originated from different Kingdoms; (2) cyanase acquired an active role in the biology of
extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior
to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ances-
tors of the genus Trichinella had an association with terrestrial plants.

Introduction

Horizontal gene transfer (HGT) involves the asexual movement of genetic material between
disparate organisms and, in the process, the acquisition of traits typically absent from the
inheriting organism. HGT has played a prominent role in the evolution of bacteria (Polz
et al., 2013). Estimates as high as 81% have been proposed as the average number of prokary-
otic genes involved at some point in HGT (Dagan et al., 2008). However, the importance of
HGT in the evolution of eukaryotes remains in flux. As early as 1998, Keen and Roberts
(1998) hypothesized a relationship between the ability of nematodes to parasitize plants and
the acquisition of genes from soil bacteria to facilitate that process. With the advance of gen-
omics studies, HGT has been better implicated in the evolution of parasitism in plant nema-
todes (Mitreva et al., 2009; Haegeman et al., 2011). Since that time, the database of putatively
transferred genes in plant and free-living nematodes has increased substantially.

Habitat and opportunity have profound impacts on the potential for HGT, which is well
documented in endosymbiotic relationships. However, HGT also occurs when there is a simple
facultative, environmental association. Genome analysis of the necromenic nematode
Pristionchus pacificus revealed functional cellulase genes of bacterial origin (Dieterich et al.,
2008). Further, Rödelsperger and Sommer (2011) demonstrated that P. pacificus diapausin
genes, typically associated with insects, were likely acquired via HGT from its necromenic
associations with beetles. Consequently, evidence is mounting that HGT is not only common
in the evolution of bacteria and in gene transmission between prokaryotes and eukaryotes, but
also in the movement of functional genes between higher order organisms (Andersson, 2005;
Richards et al., 2006; Keeling and Palmer, 2008).

Cyanase (cyanate hydratase; cyanate hydrolase; cyanate lyase) is an enzyme that catalyses
bicarbonate-dependent degradation of cyanate to ammonia and carbon dioxide. Enzyme func-
tionality is predicated on the formation of dimers which assemble into decamers; however, the
active site is produced from residues of four adjacent subunits within the homodecamer
(Walsh et al., 2000). Given that its presence is well disseminated among the ancestral lineages
in the tree of life, it has been postulated that cyanase played a role in early evolution and the
detoxification of environmental as well as metabolically generated cyanate (Ebbs, 2004). In
marine cyanobacteria, cyanase was originally thought only to detoxify cyanate produced
from intracellular urea and/or carbamoyl phosphate (CP) decomposition; however, in more
recent studies (Espie et al., 2007; Maeda and Omata, 2009; Kamennaya and Post, 2013), cya-
nase was found to be equally important in the generation of nitrogen from externally acquired
cyanate for the growth and development of cyanobacteria.
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In a recent study (Zarlenga et al., 2016), we used comparative
genomics to investigate parasitism and adaptation within the clade
I parasite Trichinella spiralis and identified a putative cyanase
gene. Organisms of the genus Trichinella complete their life cycles
within a single host and therefore have no free-living stages.
Historically, cyanase has been linked only to organisms of plant, bac-
terial and fungal origins. However, recently, it has been found in
insects (Wybouw et al., 2012, 2014) and nematodes (Opperman
et al., 2008; Haegeman et al., 2011; Zarlenga et al., 2016), though
its activity in nematodes has not been validated. Herein, we tested
and validated functional activity of the cyanase gene present in
T. spiralis. We further hypothesize independent origins for the cya-
nase found in clade I nematodes of the genera Trichinella, Trichuris
and Soboliphyme relative to the cyanase found in other nematode
groups. Results are discussed in the context of HGT, parasitism
and functional repurposing of acquired genes.

Materials and methods

Parasite propagation and isolation

Swiss-Webster mice were infected orally with 500 muscle larvae
(ML) of T. spiralis (ISS 4). Approximately 30 days post infection,
ML were isolated from pepsin:HCl digestions of eviscerated car-
casses as described previously (Zarlenga et al., 2002). Crude
worm extract (CWE) was produced by homogenizing ML in
phosphate-buffered saline (PBS), followed by centrifugation to
remove debris. Adult worms and newborn larvae (NBL) were iso-
lated essentially as described by Marti et al. (1987). Adult worms
and NBL were each deemed >90% pure by microscopic examin-
ation. All animals were utilized and treated in accordance
with an Animal Use Protocol (#15-003) approved through the
Agricultural Research Service.

RNA isolation, cloning and PCR
Approximately 300 µl of settled ML (350 000 ML) were used for
the purification of total RNA by proteinase K: SDS digestion,
organic extraction and ethanol precipitation (Dame et al., 1987).
Total RNA was isolated from NBL using Trizol Reagent
(Invitrogen, Thermo Fisher, Carlsbad, CA, USA) (Zarlenga
et al., 2002). RNA from adult worms remaining after culture
and substantially devoid of NBL were also isolated by homogen-
izing in Trizol reagent. All RNA samples were treated with
DNAse, followed by organic extraction and ethanol precipitation
prior to cDNA synthesis.

Complementary DNA was synthesized at 42 °C using Super-
script II reverse transcriptase (Invitrogen, Thermo Fisher), oligo
dT primer and 5 µg of isolated RNA in a volume of 40 µl. The
resultant cDNA was enzymatically amplified (94 °C 30 s; 60 °C
30 s; 72 °C 2 min; ×35 cycles) using ExTAQ DNA polymerase
and cyanase-specific forward (#1440)

(5′-aaggatccgatgtcggtggtgtttagatt) and reverse (#1441) (5′-aa-
ggtcgacctaatccagctgggttggt) primers complementary to the 5′ and
3′ ends of the gene, respectively. The primers contained Bam HI
and Sal I restriction sites, respectively (underlined) for subsequent
cloning for protein expression. The resultant product was cloned
into the TA cloning vector TOPO Cr2.1 (Invitrogen, Thermo
Fisher), according to the manufacturer’s instructions, and used to
transform Escherichia coli cells (DH5α strain). Clones were vali-
dated by colony PCR (Nishikawa et al., 1989) and five were chosen
for plasmid isolation and DNA sequencing. At least one clone,
Tscyn-1(c13), exhibited 100% identity with the genomic DNA-
derived sequence and was used for cloning and protein expression.

Stage-specific transcription was evaluated using forward (#1-
454) (5′-tagcagctacgttgaagcagcttg) and reverse (#1455) (5′-cattc-
gaatgacaacgcgtcgttct) cyanase-specific primers under the same

conditions as described for cDNA amplification, except that
random hexamers were used for cDNA synthesis. The primers
targeted a 244 bp fragment within the full-length gene. Small sub-
unit rRNA (cDNA) was amplified as a housekeeping gene using
forward (#46) (5′-gctgaaacttaaaggaattgac) and reverse (#50)
(5′-tcagtgtagcgcgcgtgc) primers. Amplifications were terminated
within the linear portion of the amplification curve at 26 and
28 cycles (cyanase) and at 15 cycles (rRNA). Contamination
of total RNA with parasite genomic DNA was evaluated by amp-
lifying total RNA prior to reverse transcription with primers #46
and #50.

Bacterial expression and purification of cyanase

DNA constructs were made to generate His-tagged fusion pro-
teins in two different expression vectors; pSUMO (LifeSensors)
for high yield and antibody production, and pET28a (Novagen)
for functional assays. To produce sufficient protein for antibody
production, plasmid Tscyn-1(c13) was restriction enzyme-digested
then cloned into the Bam HI/Sal I site of the pSUMO expression
vector. One clone, Tscyn-1(c33A), was selected and validated by
colony screening (Nishikawa et al., 1989) and DNA sequencing.
The expressed product [rCYN-1(c33A)] was present only within
inclusion bodies and was not biologically functional. Conseque-
ntly, a second expression construct was made in the Bam
HI/Sal I site of vector pET28a using primers #1452 (5′-aatgggtc-
gcggatcctgtcggtggtgtttagat), #1453 (5′-ccgcaagcttgtcgacctaatccagct-
gggttggt) and the In-Fusion HD Cloning Kit as recommended by
the manufacturer (Clontech); the underlined bases in primers
1452 and 1453 indicate Bam H1 and Sal I restriction sites, respect-
ively. The resultant construct was transformed into E. coli ‘Stellar
cells’ (Clontech). One clone, Tscyn-1(c94.1), was selected by colony
screening (Nishikawa et al., 1989) and exhibited 100% DNA
sequence identity to the parent sequence.

For protein expression, purified plasmid preparations of
Tscyn-1(c33A) and Tscyn-1(c94.1) were each transformed into
BL21 DE3 cells (Invitrogen, Thermo Fisher). Overnight starter
cultures were grown either in 100 µg/mL ampicillin [Tscyn-1
(c33A)] or 50 µg/mL kanamycin [Tscyn-1(c94.1)] and then trans-
ferred to 500 mL of LB containing the appropriate antibiotic. The
cells were grown to OD600 = 0.6, induced in 0.3 mM isopropyl
β-D-1-thiogalactopyranoside for 5 h, and then centrifuged and
treated for 20 min at 25 °C in 25 mL of 100 mM potassium phos-
phate buffer pH 7.0, containing 1 mg/mL lysozyme. The cells
were then frozen overnight at −20 °C.

The next day, both sets of cells were sonicated 3 × 1 min
(22 Watts) and then centrifuged (25 000 × g). To purify recom-
binant CYN-1(c33A) [rCYN-1(c33A)], the pellet was washed
three times for 1 h with 2% Triton X-100 in 100 mM potassium
phosphate buffer, pH 7.2 (wash buffer), 1× in 2 M urea + wash
buffer and one time in wash buffer. The cleaned inclusion bodies
were solubilized in 8 mL 6 M guanidinium HCl overnight
with rocking. The liquid was centrifuged and the cleared super-
natant was mixed with 8 mL of a solution containing 20 mM β-
mercaptoethanol, 500 mM L-arginine and 500 mM L-glutamine.
The cleared lysate was incubated with 1 mL (settled volume) of
Ni-NTA agarose (Macherey-Nagel) for 4 h with agitation, loaded
on to a column and washed with 300 mM potassium phosphate
containing 20 mM histidine. Bound protein was eluted with
400 mM histidine containing 0.3% sodium lauryl sarcosine (SLS)
in wash buffer. The final product was dialysed against 50 mM

potassium phosphate containing 0.2% SLS. For purifying
rCYN-1(c94.1), the cleared lysate from sonicated bacteria was
loaded directly onto a Ni-NTA agarose (Macherey-Nagel) col-
umn, washed with 300 mM potassium phosphate buffer, pH 7.2,
and then eluted with 400 mM histidine in 300 mM potassium
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phosphate and 0.3% SLS. The final product was dialysed over-
night against 50 mM potassium phosphate, and then used for
activity analyses. Protein concentrations were determined using
a BCA Protein Assay kit (Pierce/Thermo Fisher).

In vitro cyanase assay

Purified rCYN-1(c94.1) was assayed using sodium salicylate
(Sigma), sodium nitroferricyanide (Sigma) and hypochlorite in
a colorimetric assay for ammonia. A 100 µl mixture of 0.8 µg of
rCYN-1(c94.1), potassium cyanate (2 mM) and bicarbonate
(3 mM) in 50 mM potassium phosphate, pH 7.4, was incubated
for 30 min at 42 °C. After incubation, the reaction was supple-
mented with 50 µl of hypochlorite solution (0.83% sodium hypo-
chlorite, 0.13 M NaOH) and 50 µl of catalyst solution [0.6 M
sodium salicylate, 1.34 mM sodium nitroferricyanide (III), 0.13 M
NaOH], then incubated an additional 30 min at 42 °C; colour
change was monitored at OD660. Since cyanases are present in
most bacterial strains, a negative control-protein preparation was
generated from column purified, bacterial lysates derived from an
empty vector (pET28a). Enzyme activity was assayed in the pres-
ence of increasing concentrations of enzyme, increasing concentra-
tions of sodium chloride (0–600 mM) and following heat
inactivation (10 min 95 °C). All reactions were performed in quad-
ruplicate. An ammonia standard was used as a reference.

Western blots and immunohistochemical staining
Mouse antibodies to purified rCYN-1(c33A) were produced as
previously described (Zarlenga et al., 2011) with the addition of
Emulsigen (MVP technologies) to the antigen/adjuvant mix to
a final ratio of 20% (v/v). Recombinant proteins and CWE were
separated on 8–16% SDS PAGE gels (Genscript), electrophoretic-
ally transferred to immobilon membranes and then blocked for
2 h in PBS containing 0.1% Tween-20 and 5% non-fat dried
milk (PBST). Blots were incubated overnight (16 h) in primary
mouse antibody diluted 1:200 in PBST, washed the next day
and then incubated for 2 h in secondary antibody [affinity-
purified goat anti-mouse IgG-horseradish peroxidase (HRP)]
diluted 1:1000 in PBST. After washing in PBST, blots were stained
in 4 chloro-1-naphthol/H2O2 solution and photographed.

For immunohistochemical staining, ML were fixed in 10%
neutral formalin for 24 h, embedded in paraffin and sectioned
at 5 µm (HistoServ Inc., Germantown, MD, USA). Sections
were deparaffinized, quenched with 3% H2O2 and rehydrated.
Antigen-retrieval was conducted by pepsin (0.4%)-HCl (0.01N)
digestion at 37 °C for 15 min. The slides were washed twice
with 0.75% Brij 35 in PBS (BRIJ-PBS), blocked with 0.5% sodium
caseinate in BRIJ-PBS for 10 min, and then incubated for 30 min
at room temperature (24 °C) with mouse anti-rCYN-1(c33A)
serum (1:800) or with negative control mouse anti-rOos-APY-1
(1:600) (Zarlenga et al., 2011). After washing, goat anti-mouse
IgG-HRP (Dako EnVision + System-HRP Labelled Polymer,
Agilent) and Dako AEC substrate chromogen (Agilent) were
used to detect antibody binding. Tissues were counterstained
with haematoxylin, and micrographs were taken using a Zeiss
Axioskope 2 Plus microscope and AxioVision software.

Phylogenetic analysis

Cyanase encoding sequences from 87 representatives of three
Kingdoms, Animals (Nematoda), Plants and Eubacteria, were
acquired from GenBank (https://www.ncbi.nlm.nih.gov) by inde-
pendent searches (Supplementary Table S1). Full-length or near
full-length amino acid sequences of individual proteins from all
available nematodes were selected. A subset of plant and bacteria
cyanases was chosen based on the completeness of the sequences

and attaining a diverse representation of taxonomic subunits and
constrained by best amino acid sequence similarity (BLASTp)
matches to nematode queries within each Kingdom. Four of 37
nematode sequences that lacked canonical active site amino
acids were not included in the alignment. Protein sequences
were aligned using MAFFT, with default parameters as imple-
mented in Geneious v.10.2.3 (BioMatters, Ltd, New Zealand).
Following alignment, gaps were removed, leaving 135 homolo-
gous amino acids for tree-building. Maximum likelihood trees
were built from alignments using PhyML (Guindon et al.,
2010). Trees were rooted using the bacterial sequence from
Synechococcus, which was closest to the mid-point root of the
tree. Of note, all sequences were derived from parasite gen-
omes/transcriptomes. Among the filariods it is not known if
these sequences were derived by HGT from Wolbachia endosym-
bionts or other bacterial sources.

Results

A gene encoding cyanase in the genus Trichinella was identified in
a comparative genome study of T. spiralis with clade III, IV and V
parasitic and free-living nematodes (Zarlenga et al., 2016).
Phylogenetic analysis of amino acid sequences from currently
available nematode cyanases, in conjunction with representative
members of the Kingdoms Eubacteria, Plantae and Fungi, is pre-
sented in Fig. 1 (non-rooted tree) and Supplementary Fig. S1
(rooted tree). Cyanases from the clade I nematodes (Blaxter,
2011; Blaxter et al., 2014) Trichinella spp., Trichuris spp. and
Soboliphyme baturini form a well-supported subclade with plant
cyanases that is monophyletic, whereas all other nematode cya-
nases are in a clade with bacterial cyanases. A paraphyletic sister
clade for basal nematodes and plant cyanases is comprised solely
of fungal cyanases, which, in turn, is most closely related to cya-
nases from cyanobacteria. Tree topology was robust to amino acid
substitution model (Dayhoff, JTT or BLOSUM62).

Aligning amino acid sequences within the putative active site
revealed that the T. spiralis cyanase harboured all the key amino
acids characteristic of a functional protein (Supplementary
Fig. S2). To ascertain whether the DNA encodes an operative pro-
tein or represents a non-functional pseudogene, the full-length
transcript was cloned, expressed and assayed for activity. The
purified recombinant protein was found to be biochemically
active, generating ammonia in the presence of potassium cyanate
and bicarbonate in a dose-dependent manner (Fig. 2A). The
activity of the recombinant protein was substantially reduced
when incubated with increasing concentrations of NaCl (Fig. 2C),
a known inhibitor of cyanases (Anderson and Little, 1986), or
when heated to 95 °C prior to activity testing (Fig. 2B). Cyanase
activity was not observed when a sham protein prepared from
an empty vector was assayed in a similar manner (Fig. 2A).
Comparative PCR revealed that the cyanase mRNA was produced
in all developmental stages studied; mRNA transcripts were dom-
inant in the NBL and ML stages and least abundant in the adult
stage (Fig. 3).

Western blots (Fig. 4A) screened with mouse anti-rCYN-1
(c33A) exhibited positive interactions with both the CYN-1
(c94.1) (lane 1) and CYN-1(c33A) (lane 3), but showed no
reactivity with protein isolated from cells harbouring the empty
vector (lane 2). Lanes containing CWEs displayed multiple
bands migrating at apparent molecular masses of 27, 50, 100
and 250 kDa. Bands migrating at 27 and 250 kDa were noticeably
weaker relative to those migrating at 50 and 100 kDa. The func-
tional protein expressed in the pET28a vector [CYN-1(c94.1)]
appeared as a singlet migrating at 25 kDa, whereas the protein
derived from inclusion bodies and expressed as a sumo-fusion
protein [rCYN-1(c33A)] exhibited multiple immunoreactive
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bands migrating at 37 and 90 kDa, though only a singlet was
observed in gels stained with Coomassie blue (Fig. 4B). The
molecular mass calculated from the amino acid sequences includ-
ing vector-derived sequences was 26 kDa (pET28a) and 33 kDa
(pSUMO). No classic secretory signal was identified. Immunoh-
istochemical staining of fixed ML tissue sections revealed that
antibody binding at 1:800 dilution interacted strongly with the
ML hypodermis beneath the cuticle and to a lesser extent with
the muscle that lines the hypodermis and cell nuclei within the
stichosome (Fig. 5A). No binding was observed to primordial
reproductive cells or to tissues of the digestive system (Fig. 5B).

Discussion

Parasitic nematodes have undergone reductive genome evolution.
This has been guided by adaptation to well-defined life cycles,
homeostatic buffering of the host and constraints in host range.
This phenomenon is no better exemplified than in the genus
Trichinella which is characterized by high gene loss (Wang
et al., 2012; Zarlenga et al., 2016). Similarities in gene set enrich-
ment and duplications in remaining protein families suggest some
overlap in the process of functional adaptation among parasites.
However, the number of common protein families in disparate
parasitic nematodes is limited and, thereby, consistent with an
independent acquisition of parasitism. In the diversification of
the genus Trichinella, at least 15 protein domains were born, 13
of which have been annotated to bacterial, viral or fungal origins
(Wang et al., 2012). This information suggests that HGT played
prominently in the evolutionary process.

Four characters have been proposed as key determinants when
validating HGT: (1) extensive phylogenetic analyses; (2) distribu-
tion patterns in closely related organisms; (3) physical associations
among putative donor and recipient organisms (Andersson, 2005);
and (4) longevity and integration of the gene product into the

biology of the recipient (Blaxter, 2007). Through evolutionary
genome-guided analyses, we previously identified a putative cya-
nase gene within the parasitic nematode T. spiralis (see Zarlenga
et al., 2016). Given the gene was expressed most highly in a life
stage within host striated muscle cells, the probability of this
gene having been derived from contaminating plant or bacterial
DNA is minimal. Although a physical association between the lin-
eage giving rise to Trichinella and plants cannot be confirmed
from extant organisms, we find no other plausible explanation
for the presence of cyanase in Trichinella other than through HGT.

Phylogenetic analyses showed that the cyanase in Trichinella
clustered more closely with those derived from plants than with
those from bacteria. Monophyly of the Trichinella cyanase with
plant cyanases had strong support based on phylogenetic analysis
of full-length amino acid sequence datasets, and formed a sub-
clade with other basal clade I nematodes that was sister to the lar-
ger plant-based group. This finding contrasts with prior work that
holistically linked nematode cyanases to transient bacterial ances-
try or to bacterial contamination (Gan et al., 2002; Elleuche and
Pöggeler, 2008; Schlachter et al., 2017). The placement of
Trichinella spp., Trichuris spp. and S. baturini within a subclade
exclusive of plants suggests that the cyanase was acquired once
by an ancient common ancestor of all three and passed down
to extant taxa. The most recent common ancestor of these genera
lived more than 400 million years ago (MYA) (McGill et al.,
2017). In contrast, a broader examination of the Phylum
Nematoda showed that cyanases among the Secernentea includ-
ing filarioids, ascaridoids and strongyloids, formed a large mono-
phyletic subclade within the bacterial cyanases. No homologues of
cyanase have been identified in the entomopathogenic nematode
Romanomermis culicivorax, the only other Adenophorea whose
genome has been sequenced. Further, cyanase has neither been
observed in free-living nematodes nor in the most recently
diverged crown nematodes (clade V). A functional cyanase

Fig. 1. Unrooted maximum likelihood tree (ln =−8051.23052) of cyanase from parasitic nematodes, bacteria, fungi and plants. Cyanase from clade I parasitic nema-
todes form a monophyletic clade sister to plant cyanases and more closely related to fungal cyanases than to bacterial cyanases. Cyanases from clade III and IV
parasitic nematodes cluster with bacterial cyanases. Node support is indicated by the colour within the circle at each node, with red indicating strong support and
purple weak support.
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homologue has been identified as a product of HGT in numerous
plant ectoparasites, such as the spider mite, Tetranychus urticae,
for which data also support acquisition from plants (Wybouw
et al., 2012, 2018).

Within the concept of macroevolution, it has been proposed
that ‘pre-adaptation’ (Bock, 1959) is an early step in attaining
or developing new structures in an organism. As this concept
relates to parasitism, this proposal broadly correlates with the
transition of an organism to a new environment or ecotropism.
Dieterich and Sommer (2009) hypothesized that the acquisition
of detoxifying enzymes must occur during this pre-adaptation
phase when a free-living organism transitions to a host environ-
ment. The authors cited, as an example, demonstrable increases
in numerous detoxifying enzymes in the ‘intermediate’ necrome-
nic nematode, P. pacificus, as precursors to a parasitic life style
when compared with the free-living nematode, Caenorhabditis
elegans. Evidence has also been presented that P. pacificus likely
acquired insect-specific diapausin genes via HGT from its

associations with the scarab beetle (Rödelsperger and Sommer,
2011). This evidence may be directly relevant to the presence
of cyanase in Trichinella; however, whether the cyanase of
Trichinella currently functions in this capacity, i.e. detoxification,
is not yet known. Its unconventional and putative non-bacterial
source raised reasonable doubt as to the activity of the cyanase
gene of Trichinella and favoured that of an archaic pseudogene.
To this end, a recombinant protein was generated from the cloned
gene that was bioactive, heat-sensitive and predictably vulnerable
to anion inhibitory effects. No activity was observed in the protein
column purified from bacteria harbouring an empty vector, indi-
cating that the observed activity was not of bacterial origin.
Immunohistochemical staining of ML localized the protein to
the epidermis and, to a lesser extent, to the proximal musculature
and stichocyte nuclei. This location is consistent with the detoxi-
fication of cyanate or metabolites that may permeate the cuticle.
However, active gene transcription was observed in all stages
of development, including the NBL and ML, which exist within
sterile environments, namely circulating blood and muscle cells,
respectively. Thus, assuming that transcription equates to the
translation of an active protein, functionality in extant organisms
is not likely related to detoxification of externally acquired sub-
strate but either to detoxification of internally generated products
or to the parasites own metabolic needs. Reduced transcription in
fully developed adult worms is consistent with this interpretation.
Crisp et al. (2015) discovered that most HGT genes expressed in
animals are metabolically related and, during evolution, have likely
contributed to a biochemical diversification of the organism.

The decomposition of cyanate by cyanase has been shown
important for producing NH3 as an alternative nitrogen source
(Kunz and Nagappan, 1989; Anderson et al., 1990) and CO2

for carbon utilization in photosynthetic cyanobacteria (Espie
et al., 2007). Given its life cycle, host niche and the ubiquitous
transcription profile of Trichinella cyanase, cyanate degradation
in extant Trichinella may be linked to pyrimidine or arginine bio-
synthesis and control of CP-derived cyanate production rather
than the detoxification of host or environmentally acquired cyan-
ate. Unlike most organisms, members of the genus Trichinella

Fig. 2. Activity of T. spiralis recombinant cyanase. Affinity purified rCYN-1(c94.1) was
used to assay; (A) cyanase activity (●) relative to affinity purified negative control
antigen (■); (B) change in cyanase activity relative to NaCl concentration (0–600 mM);
and (C) change in cyanase activity prior to and following heat inactivation (10 min
95 °C). The control is the reaction in the absence of recombinant protein.

Fig. 3. Stage-specific transcription of the T. spiralis cyanase gene. Random primer-
derived cDNA from three developmental stages of T. spiralis (ML, NBL and adult)
was amplified with cyanase-specific and 18S rRNA-specific primers at the defined
cycle numbers. Amplification of rRNA within a total RNA preparation prior to reverse
transcription was used as a control for gDNA contamination. Fragments were sepa-
rated by agarose gel electrophoresis and stained with ethidium bromide. Cycle num-
bers were experimentally determined to be within the linear portion of the
amplification curve. NBL = newborn larvae; ML = muscle larvae; Ad = adult worms.
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lack the prototypical CAD protein [CP synthetase 2 (CPS-2),
aspartate transcarbamylase and dihydroorotase] that encodes
the activities required to initiate pyrimidine biosynthesis.
Absence of the CAD protein was also observed in most clade 8
(Spirurina; as defined by Holterman et al., 2006) nematodes
that harbour a cyanase gene (Supplementary Table S2). It is pos-
sible that the cyanase in these organisms is linked to unutilized
substrate in pyrimidine biosynthesis.

Under physiological pH, cyanate is generated as both the pri-
mary decomposition product of CP (Guilloton and Karst, 1987)
and from the dissociation of urea. In the Trichinella genome
(Mitreva et al., 2011), we identified a gene corresponding only
to the CPS-2 large subunit; the small subunit of CPS-2 that
hydrolyses glutamine neither appeared in the genome nor did sep-
arate enzymes encoding aspartate transcarbamylase or dihydroor-
otase. It is possible that CP may be generated other than by the
reciprocal linkage between the activities on the small and large
subunits of the CPS protein from other hydrolytic activity capable
of generating glutamate and free ammonia (Hewagama et al.,
1999). Precedence exists in nature for the existence of pyrimidine
autotrophs primarily in protozoans (el Kouni, 2017). Further,
Entamoeba histolytica is capable of de novo pyrimidine synthesis
in the absence of the archetypical biosynthetic pathway, even
though none of the enzymes required for pyrimidine biosynthesis
can be found within the genome (Anderson and Loftus, 2005). A
pathway for non-canonical pyrimidine biosynthesis in E. histoly-
tica has not yet been characterized; however, it has been speculated
that the pyrimidine degradation pathway might contribute to bio-
synthesis. Similar findings have been observed in cestodes and
filaroids. Other possibilities are salvage pathways used by the para-
site to acquire needed pyrimidines from the host. This is particu-
larly interesting, given that parasites such as cestodes, filarids and,
of course, Trichinella spp., Trichuris spp. and Soboliphyme spp. all
have tissue-dwelling stages during development.

In aqueous solution, urea decomposes to ammonium ions and
cyanate which further converts to CO2 and ammonia naturally or
through the action of cyanase; however, the urea cycle is absent
from most nematode species including Trichinella. Major consti-
tuents of Trichinella excretory/secretory products are ammonia
and aliphatic amines in the form of methyl-, ethyl-, propyl-,
butyl-, amyl- and heptylamine (Haskins and Weinstein, 1957;
Gilbert et al., 1973). Ethylenediamine, cadaverine, ethanolamine
and 1-amino-2-propanol are also by-products of Trichinella
metabolism. The source of these amine products is not known;

however, the ammonia likely originates in part, from the failed
initial step in the mitochondrial-derived urea cycle because of
the absence of CPS-1. It is also possible that cyanate and therefore
ammonia are generated from host-acquired CP needed for pyr-
imidine and arginine biosynthesis via cyanase.

The acquisition of cyanase in clade I nematodes was probably
associated with ancestral feeding habits. Trichinella and Trichuris
are members of the order Trichinellida, and Soboliphyme belongs
to the order Dioctophymatida. If acquired from a single HGT
event, this would have occurred before the split, which is esti-
mated to have transpired 400–470 MYA (McGill et al., 2017).
In like manner, HGT of the plant-derived spider mite cyanase
genes has been projected to have occurred before or shortly
after the formation of the Acariformes which was >435 MYA
(Dabert et al., 2010). These timeframes approximate the period
when aquatic plants diverged to embryophytes (land plants)
(Sanderson et al., 2004; Rensing et al., 2008; Morris et al., 2018).

Within the clade I ancestry, current information does not dif-
ferentiate between HGT followed by massive gene loss, or inde-
pendent acquisition of cyanase followed by lineage-specific
divergence. However, within the Phylum Nematoda, HGT of
homologous cyanases, from two different Kingdoms is consistent
with multiple, independent events. Independent HGT has been
observed in cyst and root-knot nematodes in the acquisition of
cellulase (Smant et al., 1998) and xylanase (Mitreva-Dautova

Fig. 4. Western blot of T. spiralis cyanase. Affinity-purified rCYN-1(c94.1), rCYN-1(c33A)
and ML-CWE were separated on 8–16% denaturing polyacrylamide gels and either
blotted with mouse rCYN-1(c33.A) antisera (gel A) or stained with Coomassie Blue
(gel B). Pre-stained molecular weight standards (BioRad) were used as reference.

Fig. 5. Immunohistochemical localization of native cyanase in formalin-fixed,
paraffin-embedded cross-sections of T. spiralis ML. Tissue sections were incubated
with (A) mouse anti-rCYN-1 serum (1:800) or (B) a control mouse anti-recombinant
Ostertagia apyrase serum (1:600) similarly produced. Antibody binding (red) was
visualized by incubation with horseradish peroxidase-labelled anti-mouse IgG fol-
lowed by Dako AEC substrate. Haematoxylin was used as counter-stain (blue).
A scale bar of 10 µm is shown.
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et al., 2006) genes from soil bacterial, and in the transfer of cya-
nase among some fungi (Elmore et al., 2015). Recently, Danchin
et al. (2017) showed that the transcriptomes of the clade I plant
ectoparasites Xiphinema index and Longidorus elongates acquired
GH12 cellulase from bacteria that may be linked to plant parasit-
ism; however, it is not known whether this was a single or inde-
pendent acquisition prior to divergence. To date, the acquisition
of functionally homologous genes from different Kingdoms has
not yet been observed.

In a molecular phylogenetic analysis of the Phylum Nematoda,
Holterman et al. (2006) noted that the genus Teratocephalus coin-
cides with secernentean radiation and is comprised predomin-
antly of terrestrial bacterivores. In contrast, nematodes that feed
predominantly on fungi are more closely associated with plant
parasitic nematodes and support the notion that this group
arose from fungivorous ancestors. Given that fungal cyanases
form a monophyletic group with closer ties to the early-branching
nematodes and plants than to bacteria, an association between the
clade I nematodes and fungi cannot be excluded. Alternatively,
clade I nematodes may have acquired the cyanase secondarily
from a prior plant–fungal association. However, we believe that
a delineation in feeding habits and associations among ancestral
free-living nematodes account for the acquisition of cyanase
from different kingdoms. This raises intriguing questions regard-
ing HGT of cyanase in numerous parasite lineages and the evolu-
tion of parasitism.

In conclusion, although it is difficult to ascertain events that
took place >450 MYA using only extant organisms, strong phylo-
genetic inference provides a pathway to explore deep evolutionary
and ecological history (e.g. Brooks and McLennan, 2002). Current
data suggest that the early ancestors of Trichinella had an associ-
ation with plants. They further indicate that the cyanase within
Trichinella is functionally active in all development stages studied
to date, suggesting if, at one time, the cyanase was acquired to
detoxify environmentally acquired cyanate, this role has changed
in extant organisms.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182018001701
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