6,773 research outputs found

    Thermal expansion of graphite-epoxy between 116 K and 366 K

    Get PDF
    A Priest laser interferometer was developed to measure the thermal strain of composite laminates. The salient features of this interferometer are that: (1) it operates between 116 K and 366 K; (2) it is easy to operate; (3) minimum specimen preparation is required; (4) coefficients of thermal expansion in the range of 0-5 micro epsilon/K can be measured; and (5) the resolution of thermal strain is on the order of micro epsilon. The thermal response of quasi-isotropic, T300/5208, grahite-epoxy composite material was studied with this interferometer. The study showed that: (1) for the material tested, thermal cycling effects are negligible; (2) variability of thermal response from specimen to specimen may become significant at cryogenic temperatures; and (3) the thermal response of 0.6 cm and 2.5 cm wide specimens are the same above room temperature

    PRODUCTION AND FINANCIAL IMPACTS OF THE ADOPTION OF BOVINE SOMATOTROPIN ON U.S. DAIRY FARMS

    Get PDF
    Production and financial impacts of recombinant bovine somatotropin (rbST) adoption are assessed using a survey of U.S. dairy operations and a model that corrects for self-selection bias. A substantial increase in milk production per cow is associated with rbST adoption, but large estimated financial impacts are not statistically significant. Substantial variation in the net returns of rbST adopters may be related to the management-intensive nature of rbST.Livestock Production/Industries,

    Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    Get PDF
    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    Innate Intracellular Antiviral Responses Restrict the Amplification of Defective Virus Genomes of Parainfluenza Virus 5.

    Get PDF
    During the replication of parainfluenza virus 5 (PIV5), copyback defective virus genomes (DVGs) are erroneously produced and are packaged into "infectious" virus particles. Copyback DVGs are the primary inducers of innate intracellular responses, including the interferon (IFN) response. While DVGs can interfere with the replication of nondefective (ND) virus genomes and activate the IFN-induction cascade before ND PIV5 can block the production of IFN, we demonstrate that the converse is also true, i.e., high levels of ND virus can block the ability of DVGs to activate the IFN-induction cascade. By following the replication and amplification of DVGs in A549 cells that are deficient in a variety of innate intracellular antiviral responses, we show that DVGs induce an uncharacterized IFN-independent innate response(s) that limits their replication. High-throughput sequencing was used to characterize the molecular structure of copyback DVGs. While there appears to be no sequence-specific break or rejoining points for the generation of copyback DVGs, our findings suggest there are region, size, and/or structural preferences selected for during for their amplification.IMPORTANCE Copyback defective virus genomes (DVGs) are powerful inducers of innate immune responses both in vitro and in vivo They impact the outcome of natural infections, may help drive virus-host coevolution, and promote virus persistence. Due to their potent interfering and immunostimulatory properties, DVGs may also be used therapeutically as antivirals and vaccine adjuvants. However, little is known of the host cell restrictions which limit their amplification. We show here that the generation of copyback DVGs readily occurs during parainfluenza virus 5 (PIV5) replication, but that their subsequent amplification is restricted by the induction of innate intracellular responses. Molecular characterization of PIV5 copyback DVGs suggests that while there are no genome sequence-specific breaks or rejoin points for the generation of copyback DVGs, genome region, size, and structural preferences are selected for during their evolution and amplification

    Sea surface and remotely sensed temperatures off Cape Mendocino, California

    Get PDF
    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field

    Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)

    Full text link
    We report the synthesis and superconducting properties of a metastable form of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using the conventional bromine-acetonitrile mixture for sodium deintercalation, we use an aqueous bromine solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (Tc) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of sodium and water. The samples become superconducting with low Tc values after ~ 90 h. Tc continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming non-superconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO2 layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow - approximately 0.1 valence units wide. Interestingly, the maximum Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we speculate that the maximum Tc occurs near the charge ordered insulating state that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl

    Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs

    Full text link
    Current optical space telescopes rely upon silicon Charge Coupled Devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semi-conductor bandgap which act as localized electron traps. The reduction in Charge Transfer Efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity Charge Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that threatens Gaia's performances. We present here a detailed Monte Carlo model which has been developed to simulate the operation of a damaged CCD at the pixel electrode level. This model implements a new approach to both the charge density distribution within a pixel and the charge capture and release probabilities, which allows the reproduction of CTI effects on a variety of measurements for a large signal level range in particular for signals of the order of a few electrons. A running version of the model as well as a brief documentation and a few examples are readily available at http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5 table

    A generalized quantum microcanonical ensemble

    Full text link
    We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by a combination of a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtained in the canonical ensemble. Non-canonical averages can be obtained by taking into account conserved quantities which are non-linear functions of the microstate.Comment: improved version, new titl
    • …
    corecore