15,297 research outputs found

    A note on leapfrogging vortex rings

    Get PDF
    In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring

    Political and Media Discourses about Integrating Refugees in the UK

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article addresses political and media discourses about integrating refugees in the UK in the context of the “refugee crisis”. A discursive psychological approach is presented as the best way to understand what talk about the concept is used to accomplish in these debates. A large corpus of political discussions (13 hours of debate featuring 146 politicians) and 960 newspaper articles from the UK were discourse analysed. The analysis identified five dilemmas about integration: Integration is positive and necessary, but challenging; Host communities are presented as welcoming, but there are limits to their capacity; Refugees are responsible for integration, but host communities need to provide support; Good refugees integrate, bad ones don't; Refugees are vulnerable and are skilled. All are used to warrant the inclusion or exclusion of refugees. The responsibility of western nations to support refugees is therefore contingent on the refugees behaving in specific ways

    Preterm infants have deficient monocyte and lymphocyte cytokine responses to Group B Streptococcus

    Get PDF
    Group B streptococcus GBS) is an important cause of early-and late-onset sepsis in the newborn. Preterm infants have markedly increased susceptibility and worse outcomes, but their immunological responses to GBS are poorly defined. We compared mononuclear cell and whole-blood cytokine responses to heat-killed GBS HKGBS) of preterm infants gestational age [GA], 26 to 33 weeks), term infants, and healthy adults. We investigated the kinetics and cell source of induced cytokines and quantified HKGBS phagocytosis. HKGBS-induced tumor necrosis factor TNF) and interleukin 6 (IL-6) secretion was significantly impaired in preterm infants compared to that in term infants and adults. These cytokines were predominantly monocytic in origin, and production was intrinsically linked to HKGBS phagocytosis. Very preterm infants GA, < 30 weeks) had fewer cytokine-producing monocytes, but nonopsonic phagocytosis ability was comparable to that for term infants and adults. Exogenous complement supplementation increased phagocytosis in all groups, as well as the proportion of preterm monocytes producing IL-6, but for very preterm infants, responses were still deficient. Similar defective preterm monocyte responses were observed in fresh whole cord blood stimulated with live GBS. Lymphocyte-associated cytokines were significantly deficient for both preterm and term infants compared to levels for adults. These findings indicate that a subset of preterm monocytes do not respond to GBS, a defect compounded by generalized weaker lymphocyte responses in newborns. Together these deficient responses may increase the susceptibility of preterm infants to GBS infection

    KASR: A Reliable and Practical Approach to Attack Surface Reduction of Commodity OS Kernels

    Full text link
    Commodity OS kernels have broad attack surfaces due to the large code base and the numerous features such as device drivers. For a real-world use case (e.g., an Apache Server), many kernel services are unused and only a small amount of kernel code is used. Within the used code, a certain part is invoked only at runtime while the rest are executed at startup and/or shutdown phases in the kernel's lifetime run. In this paper, we propose a reliable and practical system, named KASR, which transparently reduces attack surfaces of commodity OS kernels at runtime without requiring their source code. The KASR system, residing in a trusted hypervisor, achieves the attack surface reduction through a two-step approach: (1) reliably depriving unused code of executable permissions, and (2) transparently segmenting used code and selectively activating them. We implement a prototype of KASR on Xen-4.8.2 hypervisor and evaluate its security effectiveness on Linux kernel-4.4.0-87-generic. Our evaluation shows that KASR reduces the kernel attack surface by 64% and trims off 40% of CVE vulnerabilities. Besides, KASR successfully detects and blocks all 6 real-world kernel rootkits. We measure its performance overhead with three benchmark tools (i.e., SPECINT, httperf and bonnie++). The experimental results indicate that KASR imposes less than 1% performance overhead (compared to an unmodified Xen hypervisor) on all the benchmarks.Comment: The work has been accepted at the 21st International Symposium on Research in Attacks, Intrusions, and Defenses 201

    Stability of clinical prediction models developed using statistical or machine learning methods

    Get PDF
    Clinical prediction models estimate an individual's risk of a particular health outcome, conditional on their values of multiple predictors. A developed model is a consequence of the development dataset and the chosen model building strategy, including the sample size, number of predictors and analysis method (e.g., regression or machine learning). Here, we raise the concern that many models are developed using small datasets that lead to instability in the model and its predictions (estimated risks). We define four levels of model stability in estimated risks moving from the overall mean to the individual level. Then, through simulation and case studies of statistical and machine learning approaches, we show instability in a model's estimated risks is often considerable, and ultimately manifests itself as miscalibration of predictions in new data. Therefore, we recommend researchers should always examine instability at the model development stage and propose instability plots and measures to do so. This entails repeating the model building steps (those used in the development of the original prediction model) in each of multiple (e.g., 1000) bootstrap samples, to produce multiple bootstrap models, and then deriving (i) a prediction instability plot of bootstrap model predictions (y-axis) versus original model predictions (x-axis), (ii) a calibration instability plot showing calibration curves for the bootstrap models in the original sample; and (iii) the instability index, which is the mean absolute difference between individuals' original and bootstrap model predictions. A case study is used to illustrate how these instability assessments help reassure (or not) whether model predictions are likely to be reliable (or not), whilst also informing a model's critical appraisal (risk of bias rating), fairness assessment and further validation requirements.Comment: 30 pages, 7 Figure

    A Low-Flow Self-Cleaning Drainage System for Fish Rearing Tanks

    Get PDF
    A float-stopper mechanism was designed to drain fish holding tanks directly from the bottom. Unlike traditional, top-drawn standpipe systems, it allows continuous flushing of settled solid waste. It also prevents the accumulation of these wastes between the two standpipes that are used in bottom-drawn, double-walled standpipe systems. When suspended solids are forced upward between the outer and inner standpipes of such systems, a minimum velocity must be maintained to prevent sediment accumulation. This minimum velocity determines the minimum flow rate through the tank. The system described in this report flushes well over a wide range of flow rates

    Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Get PDF
    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation

    On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder

    Get PDF
    Motivated by applications in aero-engines, steady two-dimensional thin-filmflow on the inside of a circular cylinder is studied when the filmsurface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the filmsurface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized
    corecore