4,449 research outputs found
Which space? Whose space? An experience in involving students and teachers in space design
To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the opportunity to do so in a workshop environment. Over a number of workshops, participants were encouraged to critique a space prototype and to re-design it according to their own views and vision of learning spaces to optimise pedagogical encounters. The findings suggest that the active involvement of students and teachers in space design endows participants with the power of reflection on the pedagogical process, which can be harnessed for the actual creation and innovation of learning spaces
Exploring Cognitive States: Methods for Detecting Physiological Temporal Fingerprints
Cognitive state detection and its relationship to observable physiologically telemetry has been utilized for many human-machine and human-cybernetic applications. This paper aims at understanding and addressing if there are unique psychophysiological patterns over time, a physiological temporal fingerprint, that is associated with specific cognitive states. This preliminary work involves commercial airline pilots completing experimental benchmark task inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW); and 3) Low Workload (LW). We approach this objective by modeling these "fingerprints" through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive states do have unique complexity of physiological sequences that are statistically different from other cognitive states. More specifically, CA has a significantly higher temporal psychophysiological complexity than HW and LW in EEG and ECG telemetry signals. With regards to respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and LW. Through our preliminary work, addressing this unique underpinning can inform whether these underlying dynamics can be utilized to understand how humans transition between cognitive states and for improved detection of cognitive states
Recommended from our members
Examination of Fluconazole-Induced Alopecia in an Animal Model and Human Cohort.
Fluconazole-induced alopecia is a significant problem for patients receiving long-term therapy. We evaluated the hair cycle changes of fluconazole in a rat model and investigated potential molecular mechanisms. Plasma and tissue levels of retinoic acid were not found to be causal. Human patients with alopecia attributed to fluconazole also underwent detailed assessment and in both our murine model and human cohort fluconazole induced telogen effluvium. Future work further examining the mechanism of fluconazole-induced alopecia should be undertaken
Orbifold projection in supersymmetric QCD at N_f\leq N_c
Supersymmetric orbifold projection of N=1 SQCD with relatively small number
of flavors (not larger than the number of colors) is considered. The purpose is
to check whether orbifolding commutes with the infrared limit. On the one hand,
one considers the orbifold projection of SQCD and obtains the low-energy
description of the resulting theory. On the other hand, one starts with the
low-energy effective theory of the original SQCD, and only then perfoms
orbifolding. It is shown that at finite N_c the two low-energy theories
obtained in these ways are different. However, in the case of stabilized
run-away vacuum these two theories are shown to coincide in the large N_c
limit. In the case of quantum modified moduli space, topological solitons
carrying baryonic charges are present in the orbifolded low-energy theory.
These solitons may restore the correspondence between the two theories provided
that the soliton mass tends to zero in the large N_c limit.Comment: 10 pages; misprint corrected, reference adde
A practical algorithmic approach to mature aggressive B cell lymphoma diagnosis in the double/triple hit era. Selecting cases, matching clinical benefit. A position paper from the Italian Group of Haematopathology (G.I.E.)
An accurate diagnosis of clinically distinct subgroups of aggressive mature B cell lymphomas is crucial for the choice of proper treatment. Presently, precise recognition of these disorders relies on the combination of morphological, immunophenotypical, and cytogenetic/molecular features. The diagnostic workup in such situations implies the application of costly and time-consuming analyses, which are not always required, since an intensified treatment option is reasonably reserved to fit patients. The Italian Group of Haematopathology proposes herein a practical algorithm for the diagnosis of aggressive mature B cell lymphomas based on a stepwise approach, aimed to select cases deserving molecular analysis, in order to optimize time and resources still assuring the optimal management for any patient
Imitation in Large Games
In games with a large number of players where players may have overlapping
objectives, the analysis of stable outcomes typically depends on player types.
A special case is when a large part of the player population consists of
imitation types: that of players who imitate choice of other (optimizing)
types. Game theorists typically study the evolution of such games in dynamical
systems with imitation rules. In the setting of games of infinite duration on
finite graphs with preference orderings on outcomes for player types, we
explore the possibility of imitation as a viable strategy. In our setup, the
optimising players play bounded memory strategies and the imitators play
according to specifications given by automata. We present algorithmic results
on the eventual survival of types
Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity
We introduce the -photon quantum superposition of two orthogonal
generalized binomial states of electromagnetic field. We then propose, using
resonant atom-cavity interactions, non-conditional schemes to generate and
reveal such a quantum superposition for the two-photon case in a single-mode
high- cavity. We finally discuss the implementation of the proposed schemes.Comment: 4 pages, 3 figures. Title changed (published version
- …
