52 research outputs found

    Seasonal forage quality of rangelands across Kansas

    Get PDF
    The K-State Research and Extension Forage Task Force surveyed Kansas rangelands during the course of seasonal changes to enable producers and managers to better estimate the feed value of their pasture forage during particular times of the year. Kansas’ two distinct rangeland vegetation types, shortgrass and tallgrass prairie, were evaluated. Forage samples were collected monthly from two rangeland sites in each of 10 Kansas counties. Tallgrass vegetation was lowest in acid detergent fiber (ADF) and greatest in crude protein (CP) from May to July, and rapidly increased in ADF and declined in CP the rest of the season. Shortgrass vegetation was also lower in ADF and greater in CP from May to July, but changed less from early summer to the winter than did tallgrass vegetation. Degradable intake protein (DIP) was greatest for tallgrass vegetation in May. Otherwise DIP was similar between tallgrass and shortgrass except in February and March when shortgrass had greater DIP. DIP was greatest in May and June for both vegetation types and gradually declined from June to December. Undegradable intake protein (UIP) values were greater for tallgrass vegetation than for shortgrass vegetation from May through July, but all other months were similar. Seasonal forage quality is different between and within rangeland vegetation types, and identification of dominant vegetation is a key determinant in choosing appropriate animal nutritional management strategies

    Spinor-Vector Duality in Heterotic String Orbifolds

    Get PDF
    The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.Comment: 20 pages. v2 minor corrections. Version to appear on JHEP. v3 misprints correcte

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    A perfect match of MSSM-like orbifold and resolution models via anomalies

    Full text link
    Compactification of the heterotic string on toroidal orbifolds is a promising set-up for the construction of realistic unified models of particle physics. The target space dynamics of such models, however, drives them slightly away from the orbifold point in moduli space. This resolves curvature singularities, but makes the string computations very difficult. On these smooth manifolds we have to rely on an effective supergravity approximation in the large volume limit. By comparing an orbifold example with its blow-up version, we try to transfer the computational power of the orbifold to the smooth manifold. Using local properties, we establish a perfect map of the the chiral spectra as well as the (local) anomalies of these models. A key element in this discussion is the Green-Schwarz anomaly polynomial. It allows us to identify those redefinitions of chiral fields and localized axions in the blow-up process which are relevant for the interactions (such as Yukawa-couplings) in the model on the smooth space.Comment: 2+35 pages, 1 figur

    Forming conjectures within a spreadsheet environment

    Get PDF
    This paper is concerned with the use of spreadsheets within mathematical investigational tasks. Considering the learning of both children and pre-service teaching students, it examines how mathematical phenomena can be seen as a function of the pedagogical media through which they are encountered. In particular, it shows how pedagogical apparatus influence patterns of social interaction, and how this interaction shapes the mathematical ideas that are engaged with. Notions of conjecture, along with the particular faculty of the spreadsheet setting, are considered with regard to the facilitation of mathematical thinking. Employing an interpretive perspective, a key focus is on how alternative pedagogical media and associated discursive networks influence the way that students form and test informal conjectures

    Theokratie Und Eschatologie

    No full text
    Verlag142 p.; 24 c
    corecore