1,274 research outputs found

    Trajectories for the 1976 - 1980 Grand Tour opportunities. Volume 3 - Trajectory data for alternate Grand Tour missions

    Get PDF
    Tabulating trajectory data for alternate Grand Tour missions from earth for period 1976 to 198

    BCG treatment of malignant pleural effusions in the rat.

    Get PDF
    Intrapleurally injected cells of an ascitic rat tumour produced intrapleural effusions and solid pleural deposits. BCG, or its methanol extraction residue (MER) injected into the pleural space, suppressed tumour development and prolonged survival. Treatment was effective if given a few days before or after tumour injection. In contrast, active specific immunotherapy by repeated s.c. injection of viable or radiation-attenuated tumour cells in admixture with BCG was unsuccessful, and did not improve the response to intrapleural BCG treatment

    Modelling the effects of low-cost large-scale energy storage in the UK electricity network

    Get PDF
    © 2019 IEEE. In this paper we present a framework for modelling the impacts of large-scale electricity storage in the Great Britain (GB) electricity network. Our framework consists of two principle components; firstly, a data-driven model of the GB powerplant dispatch, and secondly, an energy storage module. The storage module takes the powerplant dispatch and modifies it considering the specified energy storage characteristics (capacity, charging/discharging power and efficiency) in order to minimize an objective function. In particular, we consider two objective functions, minimizing the system running cost and minimizing the system emissions. We demonstrate our approach using data from the GB electricity system in 2015. Our model is primarily built in python and is entirely open-source in nature

    Functional Integration of Ecological Networks through Pathway Proliferation

    Full text link
    Large-scale structural patterns commonly occur in network models of complex systems including a skewed node degree distribution and small-world topology. These patterns suggest common organizational constraints and similar functional consequences. Here, we investigate a structural pattern termed pathway proliferation. Previous research enumerating pathways that link species determined that as pathway length increases, the number of pathways tends to increase without bound. We hypothesize that this pathway proliferation influences the flow of energy, matter, and information in ecosystems. In this paper, we clarify the pathway proliferation concept, introduce a measure of the node--node proliferation rate, describe factors influencing the rate, and characterize it in 17 large empirical food-webs. During this investigation, we uncovered a modular organization within these systems. Over half of the food-webs were composed of one or more subgroups that were strongly connected internally, but weakly connected to the rest of the system. Further, these modules had distinct proliferation rates. We conclude that pathway proliferation in ecological networks reveals subgroups of species that will be functionally integrated through cyclic indirect effects.Comment: 29 pages, 2 figures, 3 tables, Submitted to Journal of Theoretical Biolog

    Guest Editorial

    Get PDF

    Quantifying the connectivity of a network: The network correlation function method

    Full text link
    Networks are useful for describing systems of interacting objects, where the nodes represent the objects and the edges represent the interactions between them. The applications include chemical and metabolic systems, food webs as well as social networks. Lately, it was found that many of these networks display some common topological features, such as high clustering, small average path length (small world networks) and a power-law degree distribution (scale free networks). The topological features of a network are commonly related to the network's functionality. However, the topology alone does not account for the nature of the interactions in the network and their strength. Here we introduce a method for evaluating the correlations between pairs of nodes in the network. These correlations depend both on the topology and on the functionality of the network. A network with high connectivity displays strong correlations between its interacting nodes and thus features small-world functionality. We quantify the correlations between all pairs of nodes in the network, and express them as matrix elements in the correlation matrix. From this information one can plot the correlation function for the network and to extract the correlation length. The connectivity of a network is then defined as the ratio between this correlation length and the average path length of the network. Using this method we distinguish between a topological small world and a functional small world, where the latter is characterized by long range correlations and high connectivity. Clearly, networks which share the same topology, may have different connectivities, based on the nature and strength of their interactions. The method is demonstrated on metabolic networks, but can be readily generalized to other types of networks.Comment: 10 figure

    Analytical solution of a model for complex food webs

    Get PDF
    We investigate numerically and analytically a recently proposed model for food webs [Nature {\bf 404}, 180 (2000)] in the limit of large web sizes and sparse interaction matrices. We obtain analytical expressions for several quantities with ecological interest, in particular the probability distributions for the number of prey and the number of predators. We find that these distributions have fast-decaying exponential and Gaussian tails, respectively. We also find that our analytical expressions are robust to changes in the details of the model.Comment: 4 pages (RevTeX). Final versio
    corecore