244 research outputs found

    Quark-Resonance model

    Get PDF
    We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Λχ\Lambda_\chi of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom. We restrict our analysis to the leading terms in the 1/Nc1/N_c expansion. The effective expansion is in (\mu^2/\cutoff^2 )^P \ln (\cutoff^2/\mu^2 )^Q. Concerning the next-to-leading order, we show that, while the pure \mu^2/\cutoff^2 corrections cannot be traced back to a finite number of non renormalizable interactions, those of order (\mu^2/\cutoff^2 ) \ln (\cutoff^2/\mu^2 ) receive contributions from a finite set of 1/\cutoff^2 terms. Their presence modifies the behaviour of observable quantities in the intermediate Q2Q^2 region. We explicitely discuss their relevance for the two point vector currents Green's function.Comment: 41 pages, 11 figures, preprint ROM2F 93/3

    Vector meson decays from the Extended Chiral Quark Model

    Get PDF
    We derive the the effective lagrangian that describes the interactions among vector, axial-vector mesons and pseudoscalars starting from the extended chiral quark model (ECQM). The results for the low-energy constants of this effective lagrangian have a parametric resemblance with existing predictions based on the Nambu-Jona-Lasinio model (except for some overall signs that we correct), but are numerically different. Therefore a precise measurement of these decay constants can shed some light on the way chiral symmetry breaking is modelled in QCD. Although most of the constants are poorly measured, comparison with phenomenology allows us to determine one of the parameters of the ECQM that could not be fully determined in previous analyses.Comment: 7 pages, revtex

    Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells

    Get PDF
    Angiotensin II (AngII) is a peptide hormone that affects the cardiovascular system, not only through typical effects on the vasculature, kidneys, and heart, but also through less understood roles mediated by the brain and the immune system. Here, we address the hard-wired neural connections within the autonomic nervous system that modulate splenic immunity. Chronic AngII infusion triggers burst firing of the vagus nerve celiac efferent, an effect correlated with noradrenergic activation in the spleen and T cell egress. Bioelectronic stimulation of the celiac vagus nerve, in the absence of other challenges and independently from afferent signals to the brain, evokes the noradrenergic splenic pathway to promote release of a growth factor mediating neuroimmune crosstalk, placental growth factor (PlGF), and egress of CD8 effector T cells. Our findings also indicate that the neuroimmune interface mediated by PlGF and necessary for transducing the neural signal into an effective immune response is dependent on α-adrenergic receptor signaling

    Odd-intrinsic-parity processes within the Resonance Effective Theory of QCD

    Get PDF
    We analyse the most general odd-intrinsic-parity effective Lagrangian of QCD valid for processes involving one pseudoscalar with vector mesons described in terms of antisymmetric tensor fields. Substantial information on the odd-intrinsic-parity couplings is obtained by constructing the vector-vector-pseudoscalar Green's three-point function, at leading order in 1/Nc, and demanding that its short-distance behaviour matches the corresponding OPE result. The QCD constraints thus enforced allow us to predict the decay amplitude omega -> pion gamma, and the O(p^6) corrections to pion -> gamma gamma. Noteworthy consequences concerning the vector meson dominance assumption in the decay omega -> 3 pions are also extracted from the previous analysis.Comment: 20 pages, 4 figure

    Quantum Loops in the Resonance Chiral Theory: The Vector Form Factor

    Get PDF
    We present a calculation of the Vector Form Factor at the next-to-leading order in the 1/N_C expansion, within the framework of Resonance Chiral Theory. The calculation is performed in the chiral limit, and with two dynamical quark flavours. The ultraviolet behaviour of quantum loops involving virtual resonance propagators is analyzed, together with the kind of counterterms needed in the renormalization procedure. Using the lowest-order equations of motion, we show that only a few combinations of local couplings appear in the final result. The low-energy limit of our calculation reproduces the standard Chiral Perturbation Theory formula, allowing us to determine the resonance contribution to the chiral low-energy couplings, at the next-to-leading order in 1/N_C, keeping a full control of their renormalization scale dependence.Comment: 27+1 pages, 9 figure

    On the human taste perception: Molecular-level understanding empowered by computational methods

    Get PDF
    Background: The perception of taste is a prime example of complex signal transduction at the subcellular level, involving an intricate network of molecular machinery, which can be investigated to great extent by the tools provided by Computational Molecular Modelling. The present review summarises the current knowledge on the molecular mechanisms at the root of taste transduction, in particular involving taste receptors, highly specialised proteins driving the activation/deactivation of specific cell signalling pathways and ultimately leading to the perception of the five principal tastes: sweet, umami, bitter, salty and sour. The former three are detected by similar G protein-coupled receptors, while the latter two are transduced by ion channels. Scope and approach: The main objective of the present review is to provide a general overview of the molecular structures investigated to date of all taste receptors and the techniques employed for their molecular modelling. In addition, we provide an analysis of the various ligands known to date for the above-listed receptors, including how they are activated in the presence of their target molecule. Key findings and conclusions: In the last years, numerous advances have been made in molecular research and computational investigation of ligand-receptor interaction related to taste receptors. This work aims to outline the progress in scientific knowledge about taste perception and understand the molecular mechanisms involved in the transfer of taste information

    Liquid biopsy is a promising tool for genetic testing in idiopathic pulmonary fibrosis

    Get PDF
    Liquid biopsy, which allows the isolation of circulating cell-free (ccf) DNA from blood, is an emerging noninvasive tool widely used in oncology for diagnostic and prognosis purposes. Previous data have shown that serum cfDNA discriminates idiopathic pulmonary fibrosis (IPF) from other interstitial lung diseases. Our study aimed to measure plasma levels of ccfDNA in 59 consecutive therapy-naive and clinically stable IPF patients. The single nucleotide polymorphism (SNP) of the MUC5B gene promoter (rs35705950), associated with increased susceptibility of developing IPF, has been sought in plasma cfDNA and genomic DNA for comparison. Thirty-five age-and sex-matched healthy volunteers were recruited as the control group. Our results show that concentrations of small-size ccfDNA fragments were significantly higher in IPF patients than in controls and inversely correlated with lung function deterioration. Moreover, the median level of 104 ng/mL allowed discriminating patients with mild disease from those more advanced. The rs35705950 polymorphism was found in 11.8% of IPF patients and 8% of controls, with no differences. Complete concordance between ccfDNA and genomic DNA was detected in all control samples, while four out of seven IPF cases (57%) carrying the rs35705950 polymorphism were discordant from genomic DNA (7% of total IPF). Liquid biopsy is a suitable tool with optimistic expectations of application in the field of IPF. In analogy with cancer biology, finding some discrepancies between ccfDNA and genomic DNA in IPF patients suggests that the former may convey specific genetic information present in the primary site of the disease

    Tree-level FCNC in the B system: from CP asymmetries to rare decays

    Get PDF
    Tree-level Flavor-Changing Neutral Currents (FCNC) are characteristic of models with extra vector-like quarks. These new couplings can strongly modify the B^0 CP asymmetries without conflicting with low--energy constraints. In the light of a low CP asymmetry in B --> J/\psi K_{S}, we discuss the implications of these contributions. We find that even these low values can be easily accommodated in these models. Furthermore, we show that the new data from B factories tend to favor an O(20) enhancement of the b --> d l \bar{l} transition over the SM expectation.Comment: 5 pages, 4 figures. Accepted version in PRD. Updated analysis with the new results from BaBar and BELLE. Figures enlarged, small typos corrected. Conclusions essentially unchange

    On the Role of FSI in K -> 2\pi Decay

    Full text link
    Contrary to wide-spread opinion that the final state interaction (FSI) enlarges the amplitude , we argue that FSI is not able to increase the absolute value of this amplitude.Comment: 10 pages, minor correction
    • …
    corecore