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Abstract. We construct an effective Lagrangian for low en- 
ergy hadronic interactions through an infinite expansion in 
inverse powers of the low energy cutoff A z of all possi- 
ble chiral invariant non-renormalizable interactions between 
quarks and mesons degrees of freedom arising from the 
bosonization of a general Nambu-Jona Lasinio type La- 
grangian including all multiquark effective interactions. We 
restrict our analysis to the leading terms in the I ~No expan- 
sion and to the divergent part of the resonance effective 
Lagrangian resulting from the integration over the quark 
degrees of freedom. Indeed, the effective expansion is in 

2 2 P 2 2 M  ( Q / A x )  ln(Ax/Q ) and we show that, while the fi- 
nite terms cannot be traced back to a finite number of 
non renormalizable interactions, the divergent ones of or- 
der 2 2 2 2 (Q ~An)ln(Ax/Q ) receive contributions from a finite 

set of 1/A 2 terms of the original quark-meson Lagrangian. 
These terms modify the behaviour of physical quantities in 
the intermediate Q2 region. We explicitely discuss their rel- 
evance for the two point vector currents Green's function. 

1 Introduction 

Effective chiral Lagrangians have become a relatively pow- 
erful technique to describe hadronic interactions at low en- 
ergy, i.e. below the chiral symmetry breaking scale A x ~- 
47rf~ ~ 1 GeV. Chiral perturbation theory (ChPt) [1, 2] de- 
scribes the low energy interactions among the pseudoscalar 
mesons 7r, K,  r/, which are the lightest asymptotic states of 
the hadron spectrum and are identified with the Goldstone 
bosons of the broken chiral symmetry. The inclusion of res- 
onance degrees of freedom in the model (vectors, axials, 
scalars, pseudoscalars and flavour singlets scalar and pseu- 
doscalar) allows to describe the interactions of all the parti- 
cles below A z [3-7]. This approach has a disadvantage con- 
nected with the non renormalizability of the effective low 
energy theory. The chiral expansion (i.e. the expansion in 
powers of derivatives of the low energy fundamental fields) 
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results as an infinite sum over chiral invariant operators of 
increasing dimensionality. At each order in the chiral ex- 
pansion the number of terms increases and the theory looses 
predictivity at higher orders. Many attempts have been done 
to reformulate the model in a more predictive fashion, both 
in the non anomalous [6] and in the anomalous sector [7] of 
the theory. 

In particular, there have been attempts to derive the low 
energy effective theory from the more fundamental theory 
which describes the interactions of quarks and gluons. The 
first attempt to connect the low energy effective theory of 
pseudoscalar mesons and resonances with QCD has been 
proposed in [8], where an application to strong interactions 
of the old and well known Nambu-Jona Lasinio (NJL) model 
[9-11] is made. The QCD Lagrangian is modified at long 
distances (i.e. below the cutoff An) by an effective 4-quarks 
interaction Lagrangian which remains chirally invariant. 

The resonance and pseudoscalar mesons fields are intro- 
duced in the model through the bosonization of the fermion 
effective action. 

The ENJL model proposed in [8] includes only inter- 
action terms which are leading in an expansion in inverse 
powers of the cutoff A n. This is a reasonable approxima- 
tion when we are interested in the behaviour of the effective 
theory for light mesons at a very low energy. Higher order 
terms bring powers of the derivative expansion term cg/A n 
which are indeed suppressed. 
This is not the case in the intermediate and high energy re- 
gion, i.e. throughout the resonance region, where non renor- 
malizable power-like corrections arising from higher order 
terms can be dominant. The ENJL is not the full answer in 
the intermediate Q2 region, while it can be satisfactorily used 
to derive the effective Lagrangian of the pseudo-Goldstone 
bosons (pions) at Q2 = 0. 

The presence of next-to-leading terms in the ENJL for- 
mulation, i.e. higher dimensional operators with four or more 
fermion fields, leads after bosonization to an effective quark- 
resonance Lagrangian whose logarithmically divergent part 
contains both renormalizable and non renormalizable terms, 
i.e. next-to-leading contributions at low energy. 

In Sect. 2 we construct the quark-resonance model: we 
review the derivation of the leading terms from the ENJL 
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model and we discuss with specific examples how next-to- 
leading terms in the quark-resonance model can be traced 
back to next-to-leading terms in the original ENJL model. 
In Sect. 3 we discuss the general parametrizations of those 
terms in the quark-resonance model which give next-to- 
leading contributions to the final effective meson-resonance 
Lagrangian. In Sect. 4 we specialize to the vector part of 
the effective meson-resonance Lagrangian and we study the 
running of the parameters of the leading ENJL Lagrangian 
induced by the next-to-leading corrections. In Sect. 5 we con- 
centrate on the case of the two-point vector correlation func- 
tion, where we are able to extract significative informations 
on the Q2 behaviour of the real part of the invariant func- 
tions from the existing data on the total e+e - hadron cross 
section in the I = 1 channel. The results can be directly 
compared with the predictions obtained in the ENJL frame- 
work [12, 13]. The corrections are shown to improve the 
agreement with the experimental data. 

2 The model 

The effective quark models describing low energy strong 
interactions assume that the result of integrating over high 
frequency modes in the original QCD Lagrangian, defined 
above a given energy cutoff, can be expressed by additional 
non-renormalizable interactions. 

For strong interactions the natural cutoff is the scale at 
which chiral symmetry spontaneously breaks: A x ~ 1 GeV. 
The cutoff sets the limit below which only the "low fre- 
quency modes" of the theory are excited. 
The QCD Lagrangian for the low frequency modes is mod- 
ified as follows: 

~ Q C D  Ax --~ ~ Q C D  + S~N.m(n  -- f e r m i o n ) .  (1) 

A• 
~ Q C D  is the standard QCD Lagrangian where only the low- 
frequency modes of quarks and gluons are present: 

An 
~ Q C D  = q(is - too)q, (2) 

with D u = Ou + iGu. The current quarks qL,R trans- 
form as qL,n ~ 9L~RqL,R under the chiral flavour group 
SU(3)L x SU(3)R,  with elements 9L,R. The QCD La- 
grangian (2) with zero quark masses (m0 = 0) is invari- 
ant under global chiral transformations. The low energy 
Green's functions generating functional in presence of exter- 
nal sources v, a, s, p is associated to the modified low energy 
QCD Lagrangian: 

~ Q  Ax = q(i]D - mo)q + ~V~(vu + ~/sau)q CD 
-Ct(s - iysp)q. (3) 

The vector-like sources v = (r + I)/2, a = (r - I)/2 trans- 
form under local chiral transormations as 

l ,  ---, gLlu9tL - ig*LOu9c 

and turn derivatives into covariant derivatives. The QCD 
Lagrangian (3) with zero quark masses (m0 = 0) becomes 
locally chiral invariant. 

Fig. 1. The QCD diagram with one gluon exchange generates an effective 
4-quark interaction vertex 

The second term in (1) is the most general non-renormalizable 
set of higher dimensional local n-fermion interactions which 
respect the symmetries of the original theory and are sup- 
pressed at low energy by powers of Q2/Aa z. 

Recently, the Nambu- Jona Lasinio (NJL) model has 
been reanalyzed in a systematic way in the framework of 
hadronic low energy interactions [8]. Many applications and 
reformulations can be found in [11]. 
The extended version of the NJL model (ENJL) includes 
in ~ N . R . ( n  -- f e r m i o n )  all lowest dimension operators: 4- 
fermion local interactions which are leading in the 1 ~No ex- 
pansion [14] (colour singlets) and respect all the symmetries 
of the original theory (chiral symmetry, Lorentz invariance, 
P and C invariance). The form of the effective Lagrangian 
is then uniquely determined: 

~ENJL  

with 

8 :Cs(A ) (-6 b (-b 
E qRqL) qLqR) (6) 

Nc A2 x a,b 

and 

SNjV~ - 
8 7 7 G v ( A  x) 

NcA  

z[ ] (qc'7,qL)(qL'7 qL) + (L --+ R)  . (7) 
a,b 

As pointed out in [8] the 4-quark effective vertex can be 
thought of as a remnant of a "low frequency" one gluon 
exchange (see Fig. 1). The gluon propagator modified at high 
energy with a cutoff 

f0 + 
A X 

Q2 ' dre-T02 (8) 

leads to a local effective 4-quark interaction 

AT \q "V q) 0r. q (9) 
By means of the Fierz-identities one gets the S, P, If, A com- 
binations of (6,7) with the identification G s  = 4 G v .  

The non-renormalizable part of the fermion action SNR(q) 
can be represented in terms of auxiliary boson fields as: 

C iSNR[q] : / ~ B e  iS[B'q]. (10) 

The previous relation introduces the meson degrees of 
freedom into the effective quark Lagrangian. The following 
two identities hold: 
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expi f f  d 4 x ~ s , p ( x ) = / ~ H e x p i  f d 4z 

{ - (qLHtqR+h'c ' )  87rzGsNCA~tr(HHf)} 

e x p i j ' d 4 x ~ v , A ( X ) = / ~ L u t ~ R u e x p i f  d4x 

{ (1L ~/ t` L t` q L 

+ 8~ ~ G V  41tr(LuLt`)+(L+ R)} , (11) 

where we have introduced three auxiliary fields: a scalar 
field H(x) and the right-handed and left-handed fields Lu 
and Ru. Under the chiral group they transform as: 

H --+ gRHgtL 

Lt` --+ 9LLt`g~L 

R .  --+ 9nRug ~. (12) 

The field H can be decomposed into the product of a new 
scalar field M times a unitary field U: 

H = M U  = ~H~, (13) 

where the field ~ is the square root of the field U: ~2 = U. 
The physical fields are obtained by redefining the auxiliary 
fields as follows: 

W~ = ~Lt~ t + {t/~t`~ 

W~ = ~Lt~ t - {tRt`~ �9 (14) 

The new set of fields transforms homogeneously under chiral 
transformation: 

{9,w;,w#} h{#,w;,w2>*, (15) 
where h is a non linear representation of the chiral group. 

We redefine also the fermion fields by replacing the cur- 
rent quarks qL,R with the constituent quarks: 

QL = ~qL QR = ~fqt~ 
QL = #TL{ t QR = qR~- (16) 

They transform under the chiral group G = SU(3)L x 
SU(3)R as: 

QL --~ h(~,gL,gR)QL QR --+ h(~,gL,gR)QR, (17) 

where the matrix h(qS, 9L, gR) acts on the element ~ of the 
coset group G/SU(3)v  

{(r --+ gn~(~5)h ~ = h~(~)g~L . (18) 

The quark field Q is defined as Q = QL + QR. 
In terms of the new variables the euclidean generating 

functional of the ENJL model reads: 

_ f ~ c ~ r ~ r  ~ r ~  ~-Fefr[~,W~,W,~,I2I;v,a,s,P] 

e -  F~u[g,WT.,Wt~ ,[I;v,a,s,p] = 

e x p ( _ / d 4 x {  N~A2 
87raG s( Ax ) tr [-I2 

2 }) 
N~A x 1 t_lW+W+~ 

4 167rS-~v(Ax) ~ ~.t ~ ~ + W~ W -~) • 

1 

f  Q C?exp(f d4xOD Q), (19) 

where we have defined the total differential operator DE as 
follows: 

1 
DE = 7u~u - ~ ( S  - 75A) - H(z) ,  (20) 

with the covariant derivative acting on the chiral quark field 
given by: 

i + i 
~ u  = Ou + iGt` + Ft` - ~Wfi - ~Ts(~t` - WF)- (21) 

The field/'t` acts like a vector field and is defined by: 

F .  = ~{~tdt. ~ + ~dt`{t} = ~ { ~ f [ O . - i ( v  z + at`)]{ 

+{[0t` - i(% - at.)]{* }. (22) 

It transforms inhomogeneously under the local vector part 
of the chiral group 

F~ --~ hFuh~ + hOuhf (23) 

and makes the derivative on the Q field invariant under local 
vector transformations. 
The field ~ is like an axial current and is defined by: 

= i{{f[0• - i(% + at`)]{ - {[0. - i(% - au)l~t } 

={~. (24) 

It transforms homogeneously under the chiral group G: 

{u --+ h{t`h*. (25) 

The field strenghts of Ft` and (t` fields are given by: 

r . ~  = o j .  - o ~ r .  + i t . ,  r~] 

(t.- = d . ( .  - d.(t` = 0t`(. + [F. ,  (.1 - (# +-+ u), (26) 

where the covariant derivative d u of the (t` field has been in- 
troduced and both transform homogeneously under the chiral 
group. They are related to the field strenghts 

f~,  : { Fr~,{ * :t= ~t FRu~ (27) 

through the identities 

i + 1 
F~,,, = - ~ f ; u  + ~[{t`, {u] 

g .  = fu-~- (28) 

The fields s and A are defined by: 

A = { t j /~{ t  _ ~//g~. (29) 

They are both proportional to the quark mass matrix 
and vanish in the chiral limit. The field H(z)  is the auxiliary 
scalar field of the bosonized action and can be parametrised 
as  
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ff-I(x) = MQ1 + or(x), (30) 

where we have split the / t  field into its vacuum expecta- 
tion value and the fluctuation around it. The quantity MQ 
is the value of the H(x)  field (used in the so called mean 
field approximation of the ENJL model) which minimizes 
the effective action in absence of other external fields: 

6&.([I,  ..) 
~fff [~=l,W~=W2__O;v,a,s,p__O;lYl=<_far> = 0. (31) 

MQ 5~ 0 corresponds to broken chiral symmetry [15]. Its 
value is the solution of the mass gap equation generated by 
(31). 

In the leading effective action (19) two constants appear: 
the scalar coupling Gs and the vector coupling Gv.  They 
are functions of the cutoff A x and their estimate involves 
non-perturbative contributions. 

The fundamental fields of the bosonized action of the 
+ constituent quarks are W~, W~,/jr .  They have the usual 

chiral properties of the physical low energy meson fields. 
The field ~ appears as a consequence of the transition from 
current to constituent quarks. 
A full effective quark model ~ la NJL contains a priori an 
infinite tower of n-fermion operators with increasing dimen- 
sionality: the ENJL 4-fermion interactions are the leading 
terms both in 1/A x and 1/N~ expansions. 

The Quark-Resonance (QR) model is the bosonization 
of the full effective current quark model ~ la NJL. 

The resulting quark-resonance Lagrangian is a non-renorma- 
lizable Lagrangian which contains all possible interaction 
terms between quarks and resonances. Physical meson fields 
are introduced by the transformation from the current quark 
base to the constituent quark base defined in (16). This im- 
plies that the equivalence between the most general chirally 
invariant current quark-resonance Lagrangian and the most 
general chirally invariant constituent quark-resonance La- 
grangian holds with two caveats: 

i) The presence of ~ and Fu currents defined by (22) 
and (24) in the constituent quark Lagrangian is entirely due 
to the transformation from current to constituent quarks of 
(16). The following identities hold: 

~ u Q L = ~ d u q L  ~ I ~ Q R = ~  t -duqR 
~ C  T ~ ~ C  7" 

QL V u =qL du{*  QR V .  =qR~du{ ,  (32) 

where d u is the covariant derivative of the current quark 

field duqL,(n) = OuqL,(R ) -- il(r)uqL,(R ), Vu  is the covariant 
derivative defined in (21): 

+r.-  i 575~u, (33) 
~ C  T 

which acts on the constituent quark Q and V~, is its charge 
conjugate 

~ c T  ~ i 
V .  - - 0 .  --Fl, - ~75~u, (34) 

which acts on the constituent anti-quark Q. (u and F u cur- 
rents can only appear in the combinations (33), (34) through 
the covariant derivatives on constituent quarks. 

ii) The vector field Wt~ and the axial-vector field W~- can 
only appear in the combination W~ - "~sW~- and its charge 
conjugate, i.e. in the combination of the leading ENJL La- 
grangian. For example, at the leading order a term QTuW~Q 
in the .constituent quark base, which would respect chiral in- 
variance, leads to the term 

(tL"/IzLI~qL + (IRTI~RtzqR + qL"/t,(~t)2Rtz~2qL + 

(IR~2 LI~(~ t )2 qR, (35) 

where the last two terms contain powers of the pseudoscalar 
field trapped in between and are absent in the current quark 

base. They are not present in the combination W~ - "/sW~-. 

The QCD euclidean generating functional of the correlation 
functions at low energy within the Quark-Resonance model 
is given by: 

Z [ v , a ,  8,p] -- E W[v'a's'p] 

= J ~ R  e -Ferf[R;v'a's'p], (36) 

where R contains the set of fields introduced by the bosoniza- 
tion of the low energy QCD effective Lagrangian and the 
effective action Feff is given by 

1 
e-Feff[R; . . . .  s,p] z / ~ G l ~ e x p l _ _ / d 4 x l G ( a ) G ( a ) ~ u ' ~  

f l" f 

= - -  ~ . - -  - 4 U u  ] 

 -,IR,/ .Q Qexp[/a4x 

7"(0 ,  + iG , )Q  + R , (37) 
0 

where the functional f[R] in (37) contains the terms with 
auxiliary boson fields which are not coupled to fermions. 

The most general structure of the R operator can be 
represented by: 

XTn C T n R =/3(Ax) x {~Dirac} • { W ; ,  W~- , /~}  • { p,, ( V / z )  },(38) 

where the couplings/5(Ax) are not deducible from symmetry 
C T principles. V u and V u are defined in (33) and (34) and the 

set {W~,, Ws H} contains all possible fields introduced by 
the bosonization which can couple to the quark bilinears and 
which can be identified with the physical degrees of freedom 
of the low energy effective theory; W~ fields appear in the 
combinations W~ =t=,),5Ws and the pseudoscalar mesons are 

C T hidden in the covariant derivatives Vu, V u . As it is shown 
in detail in [8], the integration over quark fields induces a 
mixing between the axial field W~- and the axial current ~, 
which is leading in the'chiral expansion: a diagonalization 
of the final meson effective action is required to define the 
true physical axial and pseudoscalar meson fields. 

The QR Lagrangian at leading order in the 1/A x ex- 
pansion and in the 1/Nc expansion, in the constituent quark 
base, coincides with the bosonization of the ENJL model of 
(19). The additional quark-resonance interaction terms orig- 
inate from the bosonization of non-renormalizable n-quark 
(n_> 4) vertices, with the insertion of powers of the dif- 
ferential operator d2/A~ and with the covariant derivative d 
involving external sources. The QR Lagrangian so defined is 
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locally chiral invariant. At leading order in the 1/Nc expan- 
sion it can be constructed from the locally chiral invariant 
building blocks 

(l) c~dq 
1 (-~ b - (b  ,~- 

(2) ST qLqR) qRqL) A x 

1 -a b -b a (L R)], (39) (3) ~T[(qL%qL)(qLTUqL) + ---" 
--X 

with the insertion of powers of d2/A2x acting on quarks, a, b 
are flavour indices and the bilinears in parenthesis are colour 
singlets. 

In addition there can be multifermion operators which 
are products of flavour singlet blocks which will appear in 
a quark-flavour singlet resonance Lagrangian. They are also 
suppressed in the 1/N~ expansion. We restrict our analysis 
to the flavour non singlet resonances. Terms with ~r,, are 
proportional to the bare quark mass term which is set to zero 
in this analysis. 

Summarizing, bosonization of leading N~ terms requires 
meson fields which are flavour octets with scalar, pseu- 
doscalar, vector and axial-vector quantum numbers. 

We give a couple of examples of how the bosonization of 
the multiquark terms builds the constituent quark-resonance 
Lagrangian. 

i) Terms with four quarks with the insertion of derivatives. 
We consider the term: 

~2 ~cT2 

= qL ~ q/u qL 04 ~ OL"~'a qL qL"/u ~. qL + x Ax 

+(L --. R)t,  (40) 

where we have explicitely written the charge conjugated 
derivative term which makes the whole expression C in- 
variant. 

The bosonization of the operator above together with the 
leading four quarks vector-like term leads to: 

eifd4zs~v= f / D L t x D ] ~ e x p ( i / d 4 x  

N~AZx ~trLZu+qL~UL'qc+/3qr% LU, A--fx qr 
87rzGv 

(41) 

with ~f~v given by: 

87r2Gv 
Y.f~v- NcA~ { [  qL@zqL + 

~2 ~cT2 

qL ~ % q L  R) j .  (42) 

In the constituent quark base the bosonized action can 
be easily rewritten as: 

exp(i  / 4X. 87r2GvNCA2 d I 1 -2 ~trL u + (~LT~LUQL 

~2 

 }QL + ; --, 

= / f  DW~DWff  e x p ( i / d 4 x  

{ NcA~ 1 

~2 

�9 5 )) +/3QT~{Wfi - 75W[~, )Q , (43) 

where L ,  = ~Lu~t, /~u = ~iRu~ and the vector and axial 
fields Wff have been defined in (14)�9 The/3 term obtained 
is the term 2. of the vector set in the list (50) which will be 
introduced later on. 

ii) Terms with six quarks. We consider a six-fermion inter- 
action in the current quark base 

G M -  [ -  
0 6 = Ax -~uq%q qn -du qL(tLqR -- qLqRCtR "du qL 

+qL -d u qn(tRqL -- 7tnqLqL "d u qn] , (44) 

with the derivative acting on the neighbouring field only. 
The form is constrained by invariance under P and C trans- 
formations. The Lagrangian which includes the leading four- 
fermion operators and the six-fermion operator (44) reads: 

8rr2Gv [ ] 
~%~v,s - N~AZ x (qr~/'qr) 2 + (L --, R) 

87r2Gs _ 
+A-V--'~--qLqR(tRqL + 06, (45) 

N~A x 
i.e. its bosonization can be performed in two steps and leads 
to the introduction of both scalar and vector resonances. The 
first step introduces a scalar field: 

e i f d"~v's = exp i f d4x 

Nr [(qnTt'qL) 2 + (L ~ R)] �9 

f DMexp(i f d 4x 

{ 87r2Gs tr(Mt M) - (qRMqL + qLM*qR) 

NcGM 
87r2GsA4 q%q(qRM d ,  qL -- (lR d ,  MqL + 

qr M~ d~ qn - qc "du Mtqn)} ,  (46) 

where the equality holds up to fermion terms of order 1/A~ ~ 
The second step introduces the left and right-handed fields: 

e ~ f d'~f.,~ = f D M D L ~ D R  u 
, J  

exp i d4x 87r2Gstr(MMt) 
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---NcA;x ~tr(L~ + R~) - ((tRMqL + (tLM?qR) 
87c2Gv 

l ( N c ~  2 GM 1 
+qL%LuqL + qn%R,  qn + ~ \-ff-~2 j a s G v  A2 x 

+FtL(LuM t -d, - "d. L ,M* + M*R,  d ,  
K 

- d .  M*R u qR , (47) 

where the equality holds up to fully bosonized terms of order 
1/A 4. The last term can be easily translated into the corre- 
spondent constituent quark term; it corresponds to the sum 
of the terms 5. + 6. of the mixed sector in the list (50). Notiae 
that this term represents interactions among scalar and vec- 
tor fields. In addition, it is generally true that multifermion 
terms with more than four quarks require the introduction of 
more than a single field with given Lorentz properties (i.e. 
excited resonance states). 
The possible relevance of additional non-renormalizable 
terms in the scalar sector of the NJL model has been already 
pointed out in [10]. They modify the mass-gap equation and 
can be incorporated in a renormalization of the scalar cou- 
pling Gs, or alternatively of the expectation value of the 
scalar field Me2 which minimizes the effective potential. 

We proceed now to the classification of all the constituent 
1 order (i.e. quark-resonance bilinears which appear up to A--~ 

suppressed up to A~ power respect to the leading quark- 
resonance bilinears). They are all the quark-resonance bi- 
linears which are locally chiral invariant, with the caveats 
already discussed. They can be generally represented by: 

( ~ - ~ ) n x R k x ( V ,  VC)n-k+l, (48) 

with n <_ 2. k ranges from 0 to 3 and identifies four possible 
classes. R is a resonance from the set {W + +75W-, / - /}  and 
V, V c are the covariant derivatives defined in (33), (34). 

We summarize in Table 1 the P and C transformation 
properties of the constituent quark bilinears and in Table 2 
the P and C transformation properties of the fundamental 
fields in the R set together with the currents {u and F, .  
We work in the chiral limit and we set to zero all terms that 
contain the fields S and A which are proportional to the 
quark mass matrix d//g. The integration over quarks induces 
a mixing between the pseudoscalar field ~u and the axial field 
Wfi- which is leading in the chiral expansion. The physical 
fields are obtained after a diagonalization of the quadratic 
matrix. In the ENJL model this leads to a rescaling of the 
pseudoscalar field by the mixing parameter gA, which the 
authors of [8] connect to the 9A parameter of the effective 
quark-model by Georgi-Manohar [16]. In the QR model the 
mixing parameter gA is affected by higher order corrections: 
the physical pseudoscalar field is defined by the rescaling 

~, --~ g ~ , ,  (49) 

with a new mixing parameter 9)t. In the following the field 
~ will be the physical field defined in (49). 

Table 1, Parity and Charge Conjugation transformation properties of the 
quark bilinears 

P C 

OQ + + 

6275Q - + 

Q%3'sQ -e(/z) (QT~,75Q) T 

Q'yuQ ((it) -(Q,7~Q) T 

Oz~.Q ~(u)e(v) -(Oz,~Q) T 

Q(ru~75 Q ~ euva~Vafl 

Table 2. Parity and Charge Conjugation transformation properties of the 
fundamental fields of the effective meson theory 

P C 

Vu e(/z) - V f  

Au -e(kt) A T 

O" (7" fiT 

f ~  J:e(/De(u) T- f.=l:~ T 

X+ :t:x• X T 

At order ~ there are not invariants coming from the 

bosonization of the most general non renormalizable La- 
grangian with current quarks. 

In terms of the linear combinations of the axial and vec- 
tor fields 1~ :k = W + •  all possible invariants at l/A2 x 
order are: 

1. 0%[V .[V., V:,IlQ 
~ 2  

2. OO'~{Vu,V }Q 

{ 
~ 2  

2. 0%{17V~- V }Q 

4. 0 " / , ( V ,  I?r V,, + Vu ITg~- V , ) Q  

5. O Atv,,v.l, vWJQ 

7. + 



9. Q%([V,,, I~r~" I?(Z- ] - IV,,  I/V~- I~ - ] )Q  

m. ee;ler +  v;iee;,  .l)Q 
11. Q%(~-2, Wu- }Q 

1. QLffI3Qn + b.c. 

2. O')'u{V~,,/):}Q 

~ 2  ~ c T 2  

4. Q(HV + V  
~ C  'T 

5. Or,, /;rV.O 

B)Q 

1. Q(/]rW -2 + W+2/-~r)Q 

2. Ql~X/:rl?r Q 

3. C?% 
- - -  ^ 4-  ~ 4. QT.HW;HQ 

~ 0  T 

5 .  - ^ + - H w ; ) o  Q(W~ g Vu - V ,  
~ C  T 

6. Q(~I2V; Vu - Vu W;H)Q 
~ C  T 

7 ,  - ^ + Q[W~(V u ff-I + B V.) 
~ C  T 

-(v. +,q  .)ee2]Q, (50) 

where we have used the hermiticity of the scalar field H = 
/~rt. We have grouped the terms into four classes according 
to the types of interactions among resonances. 

The first class contains two independent terms which 
are totally derivative: the first is totally antisymmetric and 
is proportional to the field strenghts o f / ' ~  and ~u currents 
defined in (26) through the identity 

i 1 
(51) 

where Gua = OuG~ -O~G u + i[Gu, G;d. The second 
term acts as a renormalization of the fermion propagator 
0 n --~ Ou(1 + 02/AZx). The second class is the Vector set and 
contains interactions among vector and axial vector fields 
W f  with pseudoscalar mesons through the covariant deriva- 
tives V, V c.  The first three terms of this set enter the calcu- 
lation of the two-point vector Green's function of Sect. (3.4). 
The third class is the Scalar set which contains interactions 
among scalars and interactions among scalars and pseu- 
doscalar mesons. The last set is the mixed Vector-Scalar sec- 
tor. We have neglected corrections of order z 2 M~ / A x where 
MQ is the vev of the scalar field / t .  

In the following sections, after having classified the types 
of next-to-leading corrections which can be generated by 
the operators of the list (50), we will focus on the vector 
meson Lagrangian and more specifically on the numerical 
contributions of higher dimensional operators to the two- 
point vector Green's function. 

Ext. Current 
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Fig. 2. A quark-loop diagram with at least one meson field as external 
leg. The integration over quarks ( and gluons) produces the vertices of the 
effective meson Lagrangian. Double lines are resonances, dotted lines are 
pions and wavy lines are the external currents 

3 The effective meson Lagrangian 

The effective meson theory is given by the integral over 
quarks and gluons of the Lagrangian (37). By neglecting 
gluon corrections, which are inessential to our argument, 
the derivation of the low energy theory reduces to the inte- 
gral over constituent quarks of the quark-resonance effective 
Lagrangian: 

f f ~Q~-~Qexp[f d4x(QT"(O~, +iGu)Q 
O 0  1 n - -  

+~o (-~x) QRQ)] ~-det[/9o + ~ 1 

where/9o = 7~(0~, + iG~,) is the free fermion operator. The 
fermionic determinant generates the set of one quark-loop 
diagrams which mediate the interactions among the meson 
fields as shown in Fig. 2. Higher dimensional terms contain 
powers of 02/A 2 i.e. of derivatives on internal quarks or 
external mesons. 

The leading terms of the ENJL model have a logarithmic 
dependence upon the cutoff A x. Terms without logarithms 
can receive contributions from all higher order terms. Indeed, 
besides the finite contributions of the leading renormalizable 
operators, higher dimensional non-renormalizable operators 
differing from the leading ones by powers of derivatives 
may develop divergences that, integrated up to the cutoff 
A n, do compensate the inverse powers of A x and contribute 
as constant terms. The same happens to the terms which are 
of order 1/A 2 in the final low energy meson Lagrangian: 
only those accompanied by logarithms can be traced back 
to terms of order 1/A2x in the original quark-resonance La- 
grangian while those without logarithms are determined by 
the whole tower of non-renormalizable interactions. In log- 
arithmic terms also the derivatives on internal quarks turn 
into powers of external momenta. 

We will limit the rest of our discussion to the sector 
of the quark-resonance model which gives contribution to 
the parameters of the vector resonance Lagrangian already 
present at leading order. 
The analysis shows that higher order contributions cannot be 
reabsorbed in a redefinition of the independent parameters 
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of the leading order. This implies that relations among reso- 
nance parameters valid at zero energy (i.e. at the leading or- 
der) can be modified when the energy increases (i.e. includ- 
ing next-to-leading corrections). Nevertheless the caveats on 
the equivalence between the current and constituent quark 
Lagrangians highly constrain the next-to-leading corrections 
to low energy QCD relations among vector, axial, scalar 
and pseudoscalar Green's functions which are valid in the 
leading ENJL model. 

As already discussed, we will collect only next-to-leading 
Q2 2 

power to leading log corrections (NPLL) of order ~ In -~-}, 

which receive contribution from afinite set of higher dimen- 
I terms). sional operators (only A--~ 

The coefficients /3(Ax) of the new 1/A~ terms have to 
be fixed from experimental data. 

3.1 The vector meson Lagrangian 

The leading non anomalous Lagrangian with one vector me- 
son (i.e. of order p3) is: 

1 1 2 
~ v  = --~ < v ~ V  ~v > +~m~ < V.V"  > 

f v  i 9v 
-2---~ < V""f+u" > - - ~  < V"~'[ gl*'~"] > 

+Hv < Vt~[r fu_~] > +ilv < V,[{ u, X-]  > (53) 

and corresponds to the so called conventional vector model 
[6, 7], where the vector fields are introduced as ordinary 
fields. This is the natural form for the effective low energy 
theory after the bosonization of four-fermion interactions. In 
the chiral limit the Iv term is zero and the Lagrangian is 
parametrized by five constants: the vector resonance wave 
function renormalization constant Zv, the mass My and the 
coupling constants f v ,  9v and Hv. 

The ENJL estimate of the five parameters has been al- 
ready derived in [8, 17] by using the heat kernel expansion 
technique for the calculation of the fermion determinant. 
Both the leading and non-leading contributions can be red- 
erived by using the loopwise expansion. The fermion differ- 
ential operator is a sum of the free part Do and a perturbation 
6, which contains the long-wavelenght boson fields and pow- 
ers of derivatives and the euclidean effective action can be 
written as: 

Pelf(6) = - T r  In[D0 + 6] + Tr In Do 

= - T r D o l 6  + 2Tr(Dol6)  2 -  3Tr(Do16)3 + .... ,(54) 

where we have subtracted its value at 6 -- 0. 
The various terms on the rhs are identified by the order 

n in the series expansion of the logarithm. The term TrDot6 
(n=l) contains the tadpole graphs. The next term (n=2) con- 
tains the set of graphs with the insertion of two vertices in 
the loop and so on. The contributions to the parameters of 
~'f'v of (53) arise from the n = 2 and n = 3 insertions of 
vertices in the perturbative expansion. 
At leading order and in the chiral limit 6 is given by: 

i + i 
6 = 60 = - r . [ r .  - ~ w ;  - -i.~5(~. - w 2 ) ] ,  (55) 

and the free part Do is 

Do = %(0~ + iG. - MQ). (56) 

The mass term M O acts as an infrared cutoff in the quark 
loop diagrams. 
The complete operator 6 is the sum of the leading part 60 
defined in (55) and the non leading contributions in the 1/A x 
expansion: 

6=6o+ ~-~ R. 
n=l 

(57) 

In Appendix A the one quark-loop diagrams with n=2 are 
explicitely calculated with the insertion of a generic form of 
the operator 6(x). Using those formulas one can get the con- 
tribution to a given parameter of the vector Lagrangian with 
the substitution of the appropriate operator 6(x). The next 
order (n=3) is calculated in Appendix B for the case which 
enter the calculation of the parameters that are analyzed in 
detail in Sects. 3.4 and 4. 

3.2 The Leading contributions 

The leading contributions to the parameters Zv, My, fv ,  
9v, Iv and Hv are obtained by the 60 insertion in the loop- 
wise expansion. Zv and My terms have the form 2_R x 
V, V c,  while gv, f v  and Hv have the form 1R x V, V c,  
with the use of identities (28), (51). The mass term I v  is of 
the type 1R x V, V c x A, with A defined in (29). 

Zv (or equivalently My) receives contribution from the 
n=2 diagram with the insertion of two vector fields: 

i + i W+ - ~ % W ~  x - ~ %  ., (58) 

while n = 3 and n = 4 diagrams with the addition of the 
%F,  vertex add to the previous term to form a covariant 
expression. 9v and f v  keep contribution from the n=2 dia- 
gram: 

/ + 
- ~ % W ;  x % C , .  (59) 

Contributions to gv and Hv come also from the n=3 
diagram: 

i + i i - ~ % w ;  • - ~ / . - y ~  x -~%'~5~.. (60) 

Finally the Iv term comes from the n=3 diagram: 

i + i 1 

The leading divergent contributions to the five parame- 
ters of the vector Lagrangian are given by: 



Nc fo I S(a----)A2 Zv = 1--~2 2 daa(1 - a) ln  

M2 = 
\ 2av ] z--~ 

~v = ,/2(1 - G ) ~ v  dc~(~ - ~) In S(~----5 

�9 Ne 2 1 f l  A 2 
Hv = --Z l--~a9A-~v .,, daa(1 - a)In S(a----)" (62) 

The function S(a) is equal to M~ +a(1 - a ) Q  2 and depends 

explicitely upon the external momentum Q2. At Qz = 0, one 
recovers the low energy limit of the ENJL model derived in 
[8], where the values of the parameters are the following: 

Nc 1 A a 
Zv - 16~r 2 3 In M~ 

l 
M~/ = 

\2Or J zv 

Nc V/-2(1 2 1 d 2 
g v -  1 6 r r 2 ~  - - g A ) ~ l n ~ - ~  

_ _ _ _  A 2 H v = - i  Nc 9 2 1 l n - -  (63) 
167r 2 6 v / ~  M~" 

They coincide with the ones calculated in [8] in the proper 
time regularization scheme, where one has to use the ex- 

M 2 
pression of the incomplete Gamma function F(0, x = ~ x )  = 

- In x - r e  + ~ ( x )  for small values of x. 
The leading contributions to the parameters of the vector 

meson Lagrangian are all logarithmically divergent. Further- 
more the five parameters are not all independent. They can 
be expressed in terms of three of the input parameters of the 
ENJL model: 

x = M ~  Gv, flA. (64) A~' 

As we will see in the next section this reduction of the 
number of independent parameters does not hold at next-to- 
leading order. 

3.3 The Next-to-Leading contributions 

As already discussed, we will restrict to the NPLL correc- 

tions ~ In ~-rA~ generated by the insertion of higher dimen- 

sional 1/A2x vertices. 
In order to determine how many independent parameters 

we are left with after the inclusion of non-renormalizable 
interactions (NRI) in the quark-resonance Lagrangian, we 
analyze the corresponding vertices that give contribution to 
the five parameters of the Lagrangian 2~7v at next-to-leading 
order. There are seven 1/A~ terms which can contribute 
to the five vector resonance parameters. They are the two 
totally derivative terms and the five one vector terms in the 

4 9 5  

list (50). Their contributions come from n=2 and n=3 cases 
of the loopwise expansion and n > 3 terms reconstruct the 
covariant form. 
For n = 2 the sets of pairs (a, b) of vertices {V a} • {vb}, 
contributing to each parameter of (53) are the following: 

13V ^ -  ~ ^ + ~ - r . { w ; , v  }+ 7.{{v. ,v.},w;-} 
A x 

2 ^ ~ 2  3 

13r Cv- +-~2x"/u{W;,V }+ A~ %{{Vu,V~,}, ~ } ] } +  

A zLv, 
i 

9v V:> {those of fv}+ { ~Tu75' u } 

A x A x 

f .  + v. G) 
A x Jf 

Hv r % W  +u x % [ V  ,[Vu, V~]] + 

13b 
{ 2"Tu'ys~u } x {-~x %[[V~,, V~,], 12d~- ] } . (65) 

In order to reduce the number of independent terms, we 
have used the transversality condition on the massive vecor 
field duWU = O. 

The contributions at n = 3 in a notation {V ~} x {V b} x 
{ W }  are: 

9 v ~ { t h o s e o f  f v } + { 2 % W + U  } 

x ~'r~'M • -~'~{v~,G ~2} + 

i i . 
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{ [ , (  -. ) 
2 _, , ]} 

/sv ^ - /sv + ~ . { w ;  , v  } + ~ - r . { { v . , w } ,  r162 

H V  4::} {2"//,W+/*} x {~"}/v,'[5' } x {~x~x{~A,~2,} 

+-~-7 .{w; ,  v } + 
A x 

(66) 

Each diagram has one (or two) leading vertex and one NTL 
vertex. At next-to-leading order in the I /A x expansion the 
five chiral leading vector resonance parameters depend upon 
10 free coefficients at most. Three come from the leading 
order and seven from I /A 2 terms. Some of the contributions 
are zero, as we will see in the next sections. Inspite of this 
reduction the five vector parameters become all independent 
at NTL order and acquires a dependence upon Q2 of the 
form: 

(1 Q~x 2 ) In x 2  f~ = +/5i A6r ~ �9 (67) 

3.4 The running o f f  2 and M~ 

For a detailed evaluation of the NTL contributions we con- 
centrate on two of the five parameters of the vector La- 
grangian relevant for the behaviour of the two-point vector 
Green function that we will compare with experimental data 
in Sect. 4: the coupling f v  between the vector meson and 
the external vector current and the mass My. In the ENJL 
model the two parameters are both expressed in terms of the 
wave function renormalization constant Zv as follows: 

N~ ( A ~ )  1 
f v  = ~ M 2 = ~ \ 2Gv J Z---v' (68) 

where Zv is the leading logarithmic contribution to the 
wave-function 

Zv = Zlv = 2 N~ fo 1 16rr 2 dora(1 - a)  In Ax . (69) 
2 

s(a) 

The product f ~M~ is scale invariant: 

2 2 N e  A2x (70) 
f v M v  - 167r 2 Gv 

By adding the NPLL corrections, the f v  coupling receives 
contributions which are absent in the wave function Zv. 
The latter defines the renormalized vector mass Mv, once 
the physical vector field has been introduced. 

The full Lagrangian up to 1/A~ order which gives con- 
tribution to f v  and Zv (or equivalently to My) is: 

~ + 
S = O(5 - MQ)Q + Q%FuQ - ~Q%W~Q 

/51 2 ~ ~ 2  
+ v - ~ firts~, {d ,d  }Q -figQ%d Fu;~Q + -AT ~1u 

A x A x 

ifl~V2 �9 2 - Z /sV .~ ~d 2 + +2 x Q%d2W~Q + 2-Fxxx cg%t ' w ; } o  

+5 O%,{Wu +, {d,,  d~}}Q. (71) 
x 

The first term defines the inverse free fermion propagator 
Do = c5 - M e.  The rest defines the local perturbation 6(x) 
up to 1/A~. There are five 1/A 2 terms with new coefficients 
/5~. Each term can be traced back to the corresponding term 
in the list (66) where the covariant derivative du is defined 
in terms of the covariant derivative V u as follows: 

i i 
(72) 

The covariant derivative on the vector-like fields + ws,v~  
is defined as: 

d # W  + ~ + + a~w; +[&,w;]. (73) 

The general formula resulting for f v  and M~ can be 
written as follows: 

16~2 3 v ~ v 4  _ 

d a P ( ( a )  In A~ 
S(a) 

1 ~ ~P~ (~)ln 
2 f=l 

N c ( A 2 x ' ~  I 
M2 = ~ \ ~  J ~ v '  (74) 

where the wave function renormalization constant Zv is 
given by: 

Nc 1 6 daa(1 - a)  ln S(a) 
Zv - 167r 2 3 

3 ~ Q2 f l  2 

S(a) i=1 
3~aQ2 1 A 2 x ]  

+SPrA~x L dozP/(cOln S(a)J 

=- Z{~ + 1-]--~2 5 /5{7 A--~x d ~ p v ( a ) l n  Ax 
_ S ( a )  

o. c' 1 
+2Pr~xx Jo daPff(oOln S(oOJ" (75) 

The /sv, r coefficients must be determined from experi- 
mental data. The contribution from ~ enters at n=3, while 
the others enter at n=2. The function S(a)  is equal to 
M S + a ( l  - o0Q 2. The pV, r(a) are polynomials in the 
Feynman parameter c~. Their explicit form can be derived 
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Fig. 3. The integrals fo 1 daPi(a)ln(A2/s(a)) which occur in the NTL 
logarithmic corrections to the effective meson Lagrangian are shown as a 
function of d Q  2. The three polynomials correspond to the three cases of 
Appendix A 

f ly , /3 r  ) and the by the formulas in Appendix A (terms i l 
formula in Appendix B (term/3].). They read: 

PlY(a) = P ~ ( a )  = lZa(1 - a )  

= ~[8oe(1 - Oe) - 16oe2(1 - o0 - 36oe2(1 -- pY( ) (~)2 

+24a~(1 - a)]  

p V ( o  0 = 613a2(1 - oz) 2 - 2off(1 - o0] 

Pff(c~) = - ~ [36o~3(1 - o02 - 18c~4(1 - o0]. (76) 

The dependence upon Q2 of the quantity fd do~P~(o~) 
ln(A2/S(oO) for the different Pi is shown in Fig. 3. From 
(76) one obtains that the purely divergent contribution (i.e. 
In 2 2 A x / M  ~ f2 dc~Pi(oO) o f / 3 2 ,  3 2 /3v,/~p terms is identically 

zero. Higher order power corrections produce a residual Q2 
dependence for the integrals of  p y  p3V, p f  as shown in 
Fig. 3. 
We are left with two new coefficients r fl~. The product 
(70) is now given by: 

2 2 N~ A~ 1+ 2 
f v M v  - 1671.2 Gv 1671.2 3 Zv  A 2 

1 

daPl(a)ln A2 -/3~Z fo daPl(a)ln A2~ ~] (77) 

where we have omitted the index V, F in ]91(a). The pres- 
ence of the new NTL terms with coefficients /3) and /~{z 
breaks in general the scale invariance of the product in (70). 

4 Phenomenology  of  the vec tor -vec tor  corre la t ion 
funct ion 

To estimate the values of the 1/A 2 coefficients which enter 
in the running of f v  and M 2 we focus on the particular 
channel of the vector resonance sector, by studying the Q2 
behaviour of the vector-vector correlation function where 
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we can compare our predictions with the experimental re- 
sults. We closely follow the derivation of the 2-point vector 
function of [12]. 
We define the 2-point vector function as: 

HV(ab)(n2) = i f d4x e iqz OIT(V2(x)Vvb(O)[O (78) **u ,,u , < >, 

where V~(x) is the flavoured vector quark current defined 
as: 

A ~ 
Vr = O(x)%--~q(x), (79) 

with A ~ the Gell-Mann matrices normalised as tr(A'~A b) = 
26 ~b. The Lorentz covariance and SU(3)  invariance imply 
for the H~V~ the following structure: 

HVv(ab)(q 2) = (q**qv -- 9**vq2)Hl (Q2)6 ab 

+qu qv I I~ ( Q2 )5 ab, (80) 

where Q2 = _q2, with qa euclidean. The SU(3)L • SU(3)R 
ENJL model gives the low energy prediction for the invariant 
functions 1 0 Hv,  H v in the chiral limit (d/g ---+ 0) and without 
the inclusion of chiral loops [12]: 

H ~ ( Q  2) = - 4 ( 2 H l  + Ll0) + ~ ( Q a )  

H ~  2) = 0. (81) 

H ~ ( Q  2) is zero at all orders in the chiral limit. 
The parameters H1 and Ll0 are two of the twelve coun- 

terterms that appear in the non anomalous effective La- 
grangian of pseudoscalar mesons at order p4 in the chiral 
expansion: 

L101(f72 -2 1 +2 --2 
= - + f**, ), f•,  ) + HI  ~ ( f / . ,  (82) 

where f ~ ,  are related to the external field-strenght tensors 
F~t:~ L through the identity: 

fffv = gF~',.,g t • sC~F~,.,'~ (83) 

and 

F.Lv = O.Z  - O.l** - i[Z**, 1 . ]  

F~u = O**r, - Our** - i[r**, r,]. (84) 

The leading values of H1 and Llo at Q2 ___ 0 predicted 
by the QR model are: 

1 Nr (1 + 9 ~ ) l n  A2 +finite terms 
H ~ -  12167r ~ M% 

1 Nr 1 9 2 )ln A2 +finite terms. (85) 
L 1 0 -  6 16-~ i (  - ~ O  

The combination 2Hi  + Llo is free from finite contributions. 
The vector-vector correlation function allows to explore 

a sector of the QR model which is free from the effects 
of the axial-pseudoscalar mixing (i.e. the parameter 9A). In- 
deed, the 9 2 dependence is introduced by the f~-~ part of the 
invariant terms, which in turn depends on the {** physical 
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fv 

Fig. 4. The running of f v  with Q2 generated by the QR model: the 
full circle indicates the insertion of a leading (O(1)) or a next-to-leading 
( ~ ( 1 / A  2) vertex in the one quark-loop diagram 

/ �9 )C 

Fig. 6. The 4-quark vector vertex of the ferrnion action with coupling Gv 
is replaced by the sum of the q-q-vector vertex and the mass term of the 
vector field in the bosonized action 

% 

Fig. 5. The resummation of n-quark bubble diagrams which gives the full 
Q2 dependence of the vector-vector correlation function in the ENJL model 
of [ 12]. They contain the insertion of the leading 4-quark vector vertex with 
coupling Gv 

field because of the identity f j~ = {u~. The vector two- 
point function gets contribution only from the f ~  terms 
and therefore the parameters H1 and Lt0 will only enter in 
a combination independent of 9A. The combination that ap- 
pears in front of the f ~  term in the Lagrangian (82) is the 
following: 

1 Nc 1 In A2 (86) 
~(2H1 + Lm) - 16re 2 12 M~ 

and contributes as in (81) to the two-point vector correla- 
tion function. As was pointed out in [12], the vector reso- 
nance exchange also contributes to the Qa dependence of 
the H~(Q 2) function. The total result is: 

II~(Q2)=-4(2Hl + L lo ) -  2M~2~vQ+ZQ2 , (87) 

which includes the contribution at Q2 = 0 from the gen- 
uine one quark-loop diagram (first term) and the contribution 
from the vector resonance exchange (second term). In this 
approximation the parameters f v  and My are the values at 
Q2 = 0 predicted by the ENJL model, i.e. they are gener- 
ated by the single quark-loop diagrams with the insertion of 
leading vertices in the 1/Ax-expansion (see Fig. 4). 

In the ENJL model [8] at Q2 = 0 the following relation 
holds: 

f2 
(2H1 + Lm)(Q 2 = 0) = _ _ ~ ( Q 2  = 0) (88) 

so that t he /71 (Q  2) function predicted by the ENJL model 
can be rewritten in a VMD way 

2 2 f v M v  
/ /~(Q2) = 2 M  ~ + {~2' (89) 

where the parameters 

2 
f ~ _  Arc 21n , M ~ -  3 A x 1 

167r 2 3 MQ 2 Gv  In A2 
(90) 

are the values at Q2 = 0 predicted by the ENJL model. 
The authors of [12] have resummed all quark-bubble di- 

agrams in Fig. 5 with the insertion of the leading 4-quark 

effective vertex with coupling Gv. In the VMD represen- 
tation of (89), the Q2 dependent contributions coming from 
the n-loop diagrams can be reabsorbed in the running of 
the vector parameters fv (Q 2) and M2(Q2), which are com- 
pletely determined in terms of the ENJL parameters. The 
result quoted in [12] is the following: 

H~z(Q 2) = 2 f~(l~2)al~(/~2) 
M,3(Q2) + Q2 , (91) 

with 

Arc 
f~(Q2) = 4 

167r 2 

1 

o dO~a(1 - a) 

In A2 
M~ + a(1 - Oz)Q 2 

M~'(Q2) = 4Gv A2x 1 A~: (92) 
f0 ldaa (1  a ) ln  - -  M~+~(1 -~ )Q2  

In the formula (92) we kept only the leading logarith- 
mic contribution of the expansion of the incomplete Gamma 
function F(0, z) - - l n z -  3'E + ~ ( z )  appearing in the 
calculation of [12]. 

In this case the product f~(Q2)M~z(Q2) remains scale 
invariant. 

4.1 H~(Q,2) from the QR model 

The full Q2 dependence of the vector-vector function can be 
extracted from the bosonized generating functional. In this 
case pure fermion vertices are absent and in particular the 
4-fermion vertex with coupling Gv  is replaced by the q-q-V 
vertex plus a vector mass term, as shown in Fig. 6. 

At the one quark-loop level the couplings H1, Lit, f v  
and the mass Mv get NTL logarithmic corrections as we 
have shown in Sect. 3.3. 

Because of the presence of independent unknown cou- 
pling constants the running of the two quantities .t'2/2 and 
2Hi + L10 is not a priori the same. There are two possible 
solutions at Q2 7(0: 

�9 The running with Q2 of the two parameters can be 
different, while their values at Q2 = 0 are related through 
the identity (88). In this case the coefficients/3~ and/31 of 
the NTL logarithmic corrections are not constrained. 

�9 The relation (88) has to be scale invariant. This puts 
a constraint on the coefficients of the NTL logarithmic cor- 
rections to f2 /2  and 2H1 + Li t , /3~ and/3}~. 

The second solution appears to hold in resonance models 
and under the saturation hypothesis formulated in [6]. For 
kinematical reasons the CV model is the only vector model 



which does not generate the saturation of the Li, Hi coun- 
terterms of the •4 Lagrangian through vector resonance ex- 
change. In the ENJL model the saturation is replaced by 
the direct contribution of one loop of quarks. Other vector 
models [6] saturate the relation (88) without the inclusion of 
quark-loops contribution. By construction the saturation by 
resonance exchange holds at the resonance scale (Q2 = M~). 
If we require a) the eqt~ivalence of the vector models (in- 
cluding the quark-loops contribution in the case of the CV 
model) and b) the validity of the saturation hypothesis, which 
in fact is experimentally well verified, we conclude that the 
relation (88) has to be scale invariant. 
Let us see if this ans~itz is satisfied by the coefficients fl~,v- 
The values of the two parameters of (88), including the 
NPLL corrections, can be deduced by using the formulas 
in Appendix A and B: 

, +i /01 ~ = 167r 2 3 v / ~  A 2 d~Pl(o01n A• S(a) 
1~1 fidaP,(a)ln A~ ] 
~.v Jo s(,~)J 

-(2H1 + L,0) = gtv + Arc 2 O 2 f l l  ft 
16r23AZ x 2 __ dc~Pl(c~)ln Ax 

2 

S(~) 
Arc 1 Q 2 [  _~_L1 2 

= Zv + 16rr 2 3 A 2 2 daPl(cOln AX S(a) 

- 3 ~  do~Pt(c~)ln A2x ] (93) 
s(c0J' 

where the wave function renormalization constant Zv has 
been calculated in (75). 

If we compare the running of the two terms of the rela- 
tion (88) up to the NPLL order, we have: 

f~_ N~ 1Q2[ fl~ / '' A~ 
- Z V  + - - 1  671-23 A~ [ 2 J 0 2  dc~Pl (c~)In S(a) 

N~ 1Q 2 
-(2H1 + Llo) = Zv + 

16rr 2 3 A2 x 

[2_~_Lldolp,(o01n A~ _3~/Lldolpl(~)ln~] 
(94) 

They have the same running in Q2 including the NPLL cor- 
rections. 

//~(Q2) can be written as follows: 

H~(Q 2) = -4(2H1 + Llo)(Q 2) 2f~(Q2)Q2 
M~/(Q2) + Q2' (95) 

By using the property that the running of the two param- 
eters in (94) is the same (at least up to the NPLL order) the 
following expression holds: 

H~(Q z) = 2f~'(Q2)M~/(Q 2) 
M~(Q2) + (~2 ' (96) 

where the running of f ~  and M 2 is given by: 
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- - -  ........ C > - -  
Fig. 7. The "dressed" vector meson propagator is given by the resummation 
of n quark-loop diagrams which are leading in the l /Nc  expansion 

Fig. 8. The full vector two-point function as predicted by the QR model 
which we remind is developed at the leading order in the 1~No expansion. 
The vector meson propagator of the second term is defined in Fig. 7 

167r 2 3 A 2 2 - -  deeP1 (c0 In Ax S(a) f~ = 2Zv + 

-B~ Lidc~Pl(a)ln A2 ] 
s(a)J 

M~/ = ~ \ 2Ov J Zv 

EL l Z ! / _  167r 2No 31 6 dctcffl - c0 In S(c0 

~'v - ~  deeP1 (c~) In . (97) 

The infinite resummation of quark bubbles considered in 
[12] corresponds to replacing in the vector contribution the 
one quark-loop dressed propagator as shown in Fig. 7. 

The set of diagrams corresponding to the full two-point 
vector correlation function predicted by the QR model is 
shown in Fig. 8. 

4.2 Determination of II~/(Q z) at NTL order from 
experimental data 

The real part of the invariant H function is related to its 
imaginary part through a standard dispersion relation 

f0 ~ ~ImH~(s) Re/-/~/(Q 2) = ds s+ Q2 (98) 

For a review on QCD spectral Sum rules and the calcu- 
lation of QCD two-point Green's functions see [18]. 

For our analysis we choose the channel of the hadronic 
current with the p meson quantum numbers (1 = 1, J = 1) 
JP = l/v~(ftTuu - d%d). The imaginary part of H i  is 
experimentally known in terms of the total hadronic ratio 
of the e+e - annihilation in the isovector channel defined as 
follows: 

R I=l (8) = O'[=l (e+e- --~ hadrons) (99) 
~r(e+ e - --+ #+#-) 

The following dispersion relation holds [19, 20]: 

ReH~(Q2) 2 [ ~  , RZ=l(s) 
= 1--~--~2j ol as  -s+t~- --~ " (100)  

We have performed a comparison between the QR model 
parametrization of the vector 2-point function in the isovec- 
tor channel, valid in the energy region 0 < Q2 < A 2, and 
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the prediction obtained from a modelization of the experi- 
mental data on e+e - -~ tmdrons [21]. For a determination 
of the function H ~ ( Q  2) in the high Q2 region (i.e. beyond 
the cutoff Ax) see [22]. 

We adopted the following parametrization of the exper- 
imental hadronic isovector ratio: 

R• = 9 GCG 
4c~ 2 (V ~ - rap) 2 + r--~ 2 

4 

(~ 3 1 + 0 ( s -  so). (101) +g 

This is a generalization of the one proposed in [19], 
where the rho meson width corrections have not been in- 
cluded. Fee = 6.7 + 0.4 KeV is the p ---+ e+e - width and 
/'p = 150.9 + 3.0 is the total widht of the neutral p [23]. We 
used the leading logarithmic approximation for c~(s): 

127r 1 
c~(s) - 33 - 2n~ log(s/A~cD) (102) 

The modelization (101) includes a dependence of the 
p channel upon the p width and the contribution from the 
continuum starting at a threshold so = 1.5 GeV 2 [19]. For 
the running of c~ we used a value of 260 MeV for AQCD, 

according to the average experimental value A(4) ~ Q C D  = 260+-5446 
MeV [23] and with ny = 4 flavours. 

The results are practically insensitive to the c~ running 
corrections and our leading log approximation turns out to 
be adequate. 

The vector Green's function in the QR model has been 
parametrized in (96, 97). To extract information on fl~, fl~ 
coefficients of the NTL logarithmic corrections we made a 
best fit of the first derivative of the 2-point function coming 
from the modelization (101) of the experimental data: 

2 f ~ .  R ! = I ( s )  

/ - / l ( ~ 2 ) e x p -  127t"2 /o a s ~  2' (103) 

where the derivative of the VV function in the QR model is 
given by: 

H,(Q2)QR = [2f~fi ( 1 + ~  --~M-~v 1 - w  ~V-vJ].(104) 

1+ Q2 

We have used ]~JQ = 265 MeV for the IR cutoff and A x = 
1.165 GeV for the UV cutoff, determined by a global fit in 
[8]. 

The fit has been done in the region: 0.5 < Q < 
0.9 GeV. Below the lower limit the NPLL corrections 

2 2 2 2 Q /A x ln(Ax/Q ) are of the same order of the neglected 
corrections proportional to M~ and of order M~/A x 2  2 In 
(AZ/Q2). Beyond the upper limit we are sufficiently near 
the cutoff to require the inclusion of higher order contribu- 
tions. 
In Fig. 9 we show the Q2 behaviour of the derivative of 
the experimental 2-point function, the curve from the best 

. . . .  I . . . .  J . . . .  t . . . .  I . . . .  - 

0.15 " 

- ~ \  Exp. 

�9 Fit. 

�9 . . ERJL 

0.10 

0.05 

o.oo , , ~ , , , , , I , , , , , , , , I , , , , 
o.2 0.4 0.8 o.e 

q (aev)  

F ig .  9.  T h e  de r iva t ive  o f  t he  e x p e r i m e n t a l  v e c t o r - v e c t o r  f u n c t i o n  
-dH~(Q2)/dQ 2 (so l id  l ine),  the  f i t ted c u r v e  o f  the  Q R  m o d e l  ( d a s h e d  

l ine) a n d  the  p r ed i c t i on  o f  the  E N J L  m o d e l  i n c l u d i n g  q u a r k - b u b b l e  r e s u m -  

m a t i o n  a n d  the  l o g a r i t h m i c  c o n t r i b u t i o n s  in the  i n c o m p l e t e  G a m m a  f u n c -  

t ions  F ( 0 ,  x )  [121 ( d o t - d a s h e d  l ine)  a re  s h o w n  as  a f u n c t i o n  o f  V / ~ .  T h e  

fit ha s  been  p e r f o r m e d  in the  r e g i o n  0 .5  _> V / ~  < 0 . 9  G e V  

fit, and the derivative of the ENJL prediction with quark- 
bubbles resummation of (91, 92). The best values of the two 
free coefficients are: 

/3~ = -0 .75 i 0.01 fib = -0 .79  5:0.01 (105) 

The X 2 of the fit has been defined as Ei(H~-H~exp)2/cr~ 
and the cr~ are defined assuming a I0% of uncertainty on the 
experimental data. A x2/n.d.f. = 0.2 has been obtained. The 
type of corrections we have analyzed are not the only ones. 
Apart from higher order corrections in the 1/A x expansion, 
possible next-to-leading corrections in the lINe expansion 
can be present. The ENJL prediction differs by roughly a 
40% from the experimental curve at 0.8 GeV. Most of this 
discrepancy Can be accounted for with the corrections that 
we have calculated. 

The invariant function H~(Q 2) obtained from the best fit 
automatically match the ENJL function at Q = MQ, because 
we have normalized the corrections to vanish at Q2 = MS: 

n~(Q2)= ENJL 2 2 n v (Q)O(M~ - Q2) 

f ~  dn~) ~ + dQ,2 dQ'aO(Q 2 - MS). (106) 

The H~(Q 2) function obtained with the values (105) and 
with the matching of (106) is plotted in Fig. 10 and com- 
pared with the ENJL prediction of (91) (i.e. including the 
resummation of linear chains of quark bubbles and includ- 
ing only logarithmic corrections). The difference between 
the two curves reaches a 30% at 0.7 GeV. 

The inclusion of gluons in the ENJL model makes worse 
the agreement with the experimental data�9 

The modelization of (101) does not include the higher 
I = 1, J = 1 resonance states with p quantum numbers 
p(1450),p(1700). There is no measurement at present of 
their leptonic width. The addition of more resonance states 
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Fig. 10. The invariant function H ~ ( Q  2) (dashed line) is obtained from the 
fitted derivative of F ig  9 by imposing the matching with the ENJL function 
at Q = MQ. The ENJL prediction of (91 (full line) is also shown. Gluon 
contributions have not been included 

increases the difference between the two curves. The sen- 
sitivity to the continuum threshold value so of RZ=l(s) is 
contained inside a 10% of variation in the range so = 
1.5 + 4 GeV 2. The practical insensitivity to large variations 
of the AQCD parameter, due to the smallness of the contri- 
butions involving a~, has been also verified. 

The analysis of the vector-vector Green's function shows 
how a sizable magnitude of NPLL corrections can be esti- 
mated from the data. Correlations in other channels which 
are experimentally less accessible could be estimated by 
QCD lattice simulations which could be used to fix the pa- 
rameters of the effective Lagrangian. 

corrections to order cesNc introduces ten more unknown con- 
stants which can be estimated in terms of a single unkown 
parameter 9 [8]. 

Nevertheless, the ENJL model is not able to describe the 
behaviour of the low energy hadronic observables at QZ :/O. 

We indicate a systematic way to get predictions on the 
behaviour of the hadronic observables in the whole low en- 
ergy range of Q2 (i.e. 0 < Q2 < A2x) which could provide 
a bridge between the non-asymptotic and the asymptoptic 
regime of QCD. 

The Quark-Resonance model formulated in this work is 
based on the inclusion of higher dimension n-quark effec- 
tive interactions which modify the values of the low energy 
hadronic observables at Q2 =/0. 

Higher dimension operators produce next-to-leading power 
leading log corrections of the type 2 2 2 2 - (Q/Ax) ln (Ax /Q ) to 

the parameters of the effective meson Lagrangian and cor- 
rections without logarithms of order (Q2/A2). The former 

are produced by a finite set of 1/A 2 terms, while the latter 
arise from an infinite tower of higher dimension operators. 

We have focused our attention on the first class of con- 
tributions, which are assumed to be dominant for values of 
Q~ above the IR cutoff M~ and below the UV cutoff A2x. 

We have shown explicitely how the next-to-leading power 
- leading log corrections enter the calculation of the two- 
point vector Green's function. In the I = 1, d = 1 channel 
we were able to fix the: four coefficients of these correc- 
tions through a fit to the experimental data on the e§ - -+ 
hadrons cross section. The comparison with the ENJL pre- 
diction of [12] provides evidence for a quantitative relevance 
of the next-to-leading terms in the 1/A x expansion in the 
Q2 dependence of the hadronic observables throughout the 
intermediate Q2 region. 
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Effective quark models inspired to the old Nambu-Jona 
Lasinio model [9] have proven to be a promising tool to de- 
scribe low energy hadronic interactions. In this type of mod- 
els the hadron fields are introduced through the bosoniza- 
tion of the effective quark action. The effective meson La- 
grangian comes from the integration over the quarks and 
gluons degrees of freedom. 

The simplest model that one can construct is the so called 
ENJL model [8], where only the lowest dimension effective 
quark operators are included, leading in the 1/A x and 1/Nc 
expansions. 

As we have shown in detail, the ENIL model correctly 
predicts the value of the parameters of the effective meson 
Lagrangian in the zero energy limit. In this limit the model 
is noticeably more predictive with respect to the usual effec- 
tive meson Lagrangian approach [1, 2, 6, 7]. As an example, 
the twelve counterterms of the effective pseudoscalar meson 
Lagrangian at order t)4 in  the chiral expansion together with 
the parameters of the chiral leading effective resonance La- 
grangian are all expressed in terms of only three input pa- 
rameters of the NIL model: G$, Gv and A x. Adding gluon 

A p p e n d i x  A .  E f f e c t i v e  p o t e n t i a l  c a l c u l a t i o n :  n = 2 

The expression of a generic contribution at n=2 in Euclidean 
space is the following: 

1 dxdyTr e ~ x ~ = - y ) -  5(y) 

d4q eiq(y_x) 1 
(2704 iO + MQ 5(x), (107) 

where Tr is the trace over Dirac, colour and flavour indices. 
It corresponds to a quark-loop diagram with two inser- 

tions of the operator 6(x) as defined in (57 and 55). 
Defining l ~ k - q and introducing the Feynman param- 

eter a ,  the formula reduces to: 

_ 1  1 
(271") 4 (27r) 4 

1 

[k  '2 + 0~(1 --  a ) / 2  + M ~ ]  2 
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r 
Tr{[i(k '  + ctl) - MQ]~(y)[i(k' - (1 - c~)D 

-M~]~(x)}. (lO8/ 
We give here the final formula for the contributions di- 

verging logarithmically with the cutoff A x obtained with the 
insertion of three different forms of the local operator 6(x). 
These are the only calculations needed to obtain the correc- 
tions to the parameters of the vector meson Lagrangian gen- 
erated by the insertion of one next-to-leading vertex 1/A2x 
and one leading vertex. 

Case 1. 5(y) = %(75)6~'(y) 6(x) = %(75)5"(x) 

IN  2/f f Ptoa = 2 (270 8 dxdy d4leil(z-Y)(l,lv - 9,~12) 

fo I A2 tr[SU(p)6~'(x)]8 dc~cffl - c~)In S(cr (109) 

where t r  is the trace over the flavour indices of the 6(x) 
matrices and S(c~)= M~ +cffl  -c~)l 2. Expression (109) can 
be simplified to: 

FZo9 = ~l N~r~2~ ff  dy tr [6U(y)(Ot.O~. 

fo I A2 8 dc~c~(1 - ~)In S(c~----5 (110) 

Case 2. 5(y) = %(75)6"(Y) 

Flog -- 

5(x) = %(75)~Su:~(x) 0 

1 Y c r ~ 2 / / d x d y / d 4 1  
2 (2708 

ea(~-V)ila(lul ~ - gull 2) 

tr 5"(y)5"X(x) 8 dc~c~2(1 - c 0 In S(c~-----~ 

fO A2 8 d~c~2(1 - c~) in S(o~----~" (111) 

Case 3.a, 6(y) = %(75)6NY) 

Flog - 

5(x) = %(Ts)5~(x) O.  O~ 

2(2 )sflNcrr2 j'&dy f d41eiZ(z-Y)tr[5"(y)3~(z)] 

~ol d~ ~ )  " {14 gtz;~ [3c~2(1- ~ - 2ce3(l - ~ 

1 N~rr 2 1 A2 

~ 2  
Case 3.b. 5(y) = %(75)6/*(y) 5(x) = 7u(7~)Su(x) 0 

509-2(2 )8 f 1 Ncvr2 ffdxdy f d41ea(X-U)tr[6U(y)6"(x)] 

1 A 2 . {/4guy [_  18a2(1 _ oe)2 + 12oe3(1 _ ct)l ~ do~ In 

+121ul.[24oz2(1-ct) 2 -  16Ct3(1- oe)l } 

1 NcTr 2 1 A 2 
- 2(2~)4fdYfo dc~ln-~tr[Sl*(Y){(O2)2gu ~ 

[-18a2(1 - (x) 2 + 12a3(1 - c~)/ 

We have not included logarithmic terms proportional to 
the IR cutoff mass MQ. 

A p p e n d i x  B. E f f e c t i v e  po tent ia l  ca l cu la t ion:  n = 3 

The expression of a generic contribution at n=3 in Euclidean 
space is the following: 

/ f /  f dak ik(x-) 1 1 dxdydz Tr -57g~4e -~ ^ 6(y) 
3 2re ik + MQ 

f d4r it(-z) 1 1 ~(x). 
~4  e y i~ + MQ jzrr i(t + MQ 

(114) 

By defining I ~- k - q and m ~ r - q and by introducing 
the Feynman parameters c~,/3 the integral reduces to: 

- 2 / / / d x d y d z J ' / 3  27r 4d41 d4?neil(x-y)+im(y-z)2~ 4 

1 dakl 
fo dC~ foI-C~d/3 I "~-gr#Tr 
[(i(kl +gl)-- MQ )6(y)(i(kt +12)-- MQ)b(z)(i(kt +g3)-- M~)6(x)] 

[kt2+S(ex,~)] 3 

where 

ll -- --~(m -- l) +/3l 

/2 ~ (1 --  Og)(?Tt --  l) +/31 

13 ~ - c f fm  - l) - (1 - fl)l 

(115) 

(116) 

and 

S ( O ~ , / 3 )  ~-  O~(1 - -  o g ) ( m  - -  l )  2 

+/3(1 -/3)l 2 + 2c~j3l(m - l) + M~. (117) 

The case which enters in the calculation of the NPLL 
corrections to the parameters of the two-point vector Green's 
function corresponds to the insertion of the following local 

operators: 
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5(y) = 7uSU(y) 5(z) = % ~ ' ( z )  
1 ~ A  ~ 2  

5(x) = ~xxVA{O , O }. (118) 

Formula (115) simplifies to: 

/ / /  / /  4 
2 dmdydz d4l d meil(x_y)+im(y_z) 

Luv(m, l) tr[Su(y)~v(z )] 

2 d4m ira( ~ -z) 

Luv(m, 1 = O) tr[5.(y)~Sv(z)], (119) 

where L . . ( m ,  1 = O) is given by: 

~l a/o'l-a fl/ d4k' --i 
Lu . (m ,  1 = O) = Nc da d 277. 4 [kt2 + S(O~)] 3 

Tr[(i(k' - ~ )  - MQ)%( i (k '  + (1 - c~)r~) 

- M Q ) % ( i ( k '  - o~r~) - MO)fA](U - c~rn);~(k ' - c~m) 2. 

(120) 

The logarithmically divergent contribution with the ex- 
clusion of terms proportional to the IR cutoff mass MQ is 
given by: 

47r 2 f 
Lu~,(m, 1 = o )  - a s  

{ O/~v~.p4[30!3( 1 0~)2 __ 3 4( 1 __ 0~)] + TI~/~TO, v~T~ 2 

[ -4~3(1  - o~) 2 + 2c~4(1 - c0] } In 5'(c0 ' A2x (121) 

where again S(c~) = c~(1 - c~)m 2 + M~.  
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