722 research outputs found
Equilibrium temperatures of mass transfer cooled walls in high-speed flow of an absorbing-emitting gas
Equilibrium temperatures of mass transfer cooled walls in high speed flow of absorbing-emitting ga
Inter-specific variation in bud banks and flowering effort among semi-arid African savanna grasses
Population viability and productivity of grasses in southern African savannas are dependent upon both successful seed production and tiller recruitment from the belowground bud bank. Relative recruitment rates from buds versus seeds influence population dynamics, genetic diversity, and patterns of vegetation productivity. We assessed patterns in bud bank size and flowering effort in fourteen semi-arid savanna grass species in the Kalahari region of Botswana. There was high inter-specific variability and between-year variability in flowering effort (percentage of tillers flowering). Bud production (number of buds per tiller) exhibited high inter-specific variability, but was more consistent between-years than flowering effort. Relative allocation to flowering versus bud production varied with life history, with longer-lived perennial grasses showing higher bud production and lower flowering effort relative to shorter-lived grasses. Several species showed higher bud production and lower flowering effort in a wet year compared to a dry year, and grass species that are regularly grazed maintained significantly larger bud banks than non-grazed species. These differential demographic responses among co-occurring species suggest that environmental change in semi-arid savannas may alter the composition, relative abundances and diversity of grasses, and that the maintenance of a belowground bud bank is an important factor influencing their resiliency, their capacity to recover from grazing and/or drought, and their persistence and sustainability under changing environmental conditions. Meristem-limitation in species that maintain few viable buds may constrain their population viability under changing conditions in semi-arid savannas. (C) 2012 SAAB. Published by Elsevier B.V. All rights reserved
Recognising Desire: A psychosocial approach to understanding education policy implementation and effect
It is argued that in order to understand the ways in which teachers experience their work - including the idiosyncratic ways in which they respond to and implement mandated education policy - it is necessary to take account both of sociological and of psychological issues. The paper draws on original research with practising and beginning teachers, and on theories of social and psychic induction, to illustrate the potential benefits of this bipartisan approach for both teachers and researchers. Recognising the significance of (but somewhat arbitrary distinction between) structure and agency in teachers’ practical and ideological positionings, it is suggested that teachers’ responses to local and central policy changes are governed by a mix of pragmatism, social determinism and often hidden desires. It is the often underacknowledged strength of desire that may tip teachers into accepting and implementing policies with which they are not ideologically comfortable
Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics
In this work we outline the two most commonly used test theories (RMS and
SME) for testing Local Lorentz Invariance (LLI) of the photon. Then we develop
the general framework of applying these test theories to resonator experiments
with an emphasis on rotating experiments in the laboratory. We compare the
inherent sensitivity factors of common experiments and propose some new
configurations. Finally we apply the test theories to the rotating cryogenic
experiment at the University of Western Australia, which recently set new
limits in both the RMS and SME frameworks [hep-ph/0506074].Comment: Submitted to Lecture Notes in Physics, 36 pages, minor modifications,
updated list of reference
Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity
Purpose: To study the effects of a neutralizing antibody to vascular endothelial growth factor (VEGF), given as an intravitreous injection, on intravitreous neovascularization (IVNV) and ongoing vascular development of avascular retina in a rat model relevant to human retinopathy of prematurity. Methods: Newborn Sprague-Dawley rats were exposed to oxygen fluctuations alternating between 50% O2 and 10% O2 every 24 h. At postnatal day (p)12, rat pups received intravitreous injections of a neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and were returned to oxygen cycling until p14, at which time they were placed into room air. At p18 (time of maximal IVNV) or p25 (time point in regression), animals were sacrificed. Their retinas were dissected, flat mounted, and stained with Alexa-isolectin for fluorescence microscopy. IVNV was measured as number of clock hours involved in injected VEGF antibody and control eyes. Mean clock hours of IVNV, avascular/total retinal areas and capillary densities within vascularized retinas were determined in injected eyes of control and treatment groups. Mean clock hours of IVNV in fellow noninjected eyes from control and treatment groups were analyzed by Student’s t-tests to assess possible crossover effects from systemic absorption of antibody. Eyes from p13 rat pups were sectioned for immunohistochemistry or analyzed for VEGF receptor 2 (VEGFR2) phosphorylation by western blot. Free retinal VEGF at p13, one day following injections, was measured by ELISA. Results: Neutralizing antibody to VEGF at 25 ng and 50 ng caused a modest but significant inhibition of IVNV compared to IgG injected controls at p18, but only the 50 ng dose decreased IVNV compared to control at p25 (one-way ANOVA p=0.003; posthoc Bonferroni t-test p=0.003). Neither dose caused a significant difference in avascular/total retinal area at p18 compared to control. However, at p25, the 50 ng dose caused a significant reduction in avascular/total retinal area compared to the 25 ng dose (ANOVA p=0.038; posthoc Student’s t-test p=0.038). There was no difference in avascular/total retinal area between IgG and the 25 ng dose. At p13, qualitative analysis of immunohistochemical sections of retina showed the 50 ng dose of VEGF antibody reduced VEGFR2 phosphorylation within the retina and around blood vessels. Also at p13, there was a significant increase in free intraretinal VEGF protein in eyes that had been treated with 50 ng dose of VEGF antibody compared to IgG injected control (Student’s t-test p=0.042). There were no differences in capillary densities in the vascularized retinas between eyes injected with the 50 ng dose of VEGF antibody and IgG control. There was also no difference in weight gain between treated and control groups. Conclusions: Neutralizing antibody to VEGF at a 50 ng dose caused a significant and sustained reduction in IVNV without interfering with ongoing retinal vascularization in a rat model of ROP, whereas a lower dose of antibody did not. These data also suggest that compensatory regulatory mechanisms may lead to increased VEGF concentration after intravitreous injection of a neutralizing antibody to VEGF. Further study is necessary for safety and for determination of drug dose of VEGF antibody, since dose of treatment appears important and may vary among infants with severe ROP. In this study, survival of already developed retinal capillaries did not appear affected. Neutralizing VEGF by an intravitreous injection of antibody may offer a treatment consideration for severe ROP, which fails current standard of care management
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Molybdenum geochemistry in a seasonally dysoxic Mo-limited lacustrine ecosystem
Lakes are important for storage of the essential micronutrient molybdenum (Mo) during its transfer from the continents to the oceans, but little is known about the major sources and sinks for Mo in lacustrine ecosystems. We studied Mo cycling in Castle Lake, a small subalpine lake in the Klamath-Siskiyou Mountains of Northern California underlain primarily by mafic and ultramafic rocks where primary productivity is limited by Mo bioavailability. The deeper water of the lake becomes dysoxic (9–90 μM dissolved oxygen) during the summer. This study was undertaken to identify the sources of Mo to Castle Lake and establish a Mo budget. We measured Mo concentrations in a suite of bulk solids (lake sediments, soils and bedrock) and aqueous samples (sediment porewaters, soil runoff, spring waters, snow and ice) from Castle Lake and its watershed. Lake sediments have elevated Mo (7–36 ppm) compared to soils and bedrock (0.2–2 ppm) and Mo/Al values were nearly two orders of magnitude higher than the crustal abundance. Sediment porewaters had higher Mo (4–15 nM) than lake water (2–4 nM), soil runoff (0.1–6.2 nM), snowmelt (⩽0.1 nM), lake ice (0.3–2.2 nM) and local spring waters (0.03–2.72 nM). Bulk lake sediments had negative δ^(98/95)Mo values, ranging from −0.5 to −1.0‰ (±0.1). We used the numerical model PROFILE to estimate the net reaction rate of Mo in the porewater. Model calculations ruled out diagenesis as a source of Mo to lake sediments; diagenetic Mo always represented ⩽5% of the total Mo content in sediment. We also ruled out dissolved Mo inputs from groundwater and watershed inflow as important sources of Mo. Two whole-lake experimental Mo additions in the 1960’s could have contributed a sizeable amount of Mo to the lake sediments, but only over a short period. Atmospheric deposition of anthropogenic Mo from extensive copper smelting that occurred south of Castle Lake from 1896 to 1919 and from major Californian urban centers today were negligible Mo sources. Mo flux from the sediments (0.4–0.5 nmol cm^(−2) yr^(−1)) was roughly equal to Mo fluxes from surface inflow and outflow, whereas Mo burial fluxes were significantly higher (11.5 nmol cm^(−2) yr^(−1)). Because dissolved Mo fluxes were minimal, and atmospheric Mo deposition was estimated to be a minor source of Mo (<1 nmol cm^(−2) yr^(−1)), the largest source of Mo is non-detrital particulate matter (∼12 nmol cm^(−2) yr^(−1)), likely a mixture of organic matter and Fe–Mn oxyhydroxides as supported by Mo isotopic data
- …