1,532 research outputs found
Stability of Landau-Ginzburg branes
We evaluate the ideas of Pi-stability at the Landau-Ginzburg point in moduli
space of compact Calabi-Yau manifolds, using matrix factorizations to B-model
the topological D-brane category. The standard requirement of unitarity at the
IR fixed point is argued to lead to a notion of "R-stability" for matrix
factorizations of quasi-homogeneous LG potentials. The D0-brane on the quintic
at the Landau-Ginzburg point is not obviously unstable. Aiming to relate
R-stability to a moduli space problem, we then study the action of the gauge
group of similarity transformations on matrix factorizations. We define a naive
moment map-like flow on the gauge orbits and use it to study boundary flows in
several examples. Gauge transformations of non-zero degree play an interesting
role for brane-antibrane annihilation. We also give a careful exposition of the
grading of the Landau-Ginzburg category of B-branes, and prove an index theorem
for matrix factorizations.Comment: 46 pages, LaTeX, summary adde
Single-electron latch with granular film charge leakage suppressor
A single-electron latch is a device that can be used as a building block for
Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale
metal "dots" connected in series by tunnel junctions; charging of the dots is
controlled by three electrostatic gates. One very important feature of a
single-electron latch is its ability to store ("latch") information represented
by the location of a single electron within the three dots. To obtain latching,
the undesired leakage of charge during the retention time must be suppressed.
Previously, to achieve this goal, multiple tunnel junctions were used to
connect the three dots. However, this method of charge leakage suppression
requires an additional compensation of the background charges affecting each
parasitic dot in the array of junctions. We report a single-electron latch
where a granular metal film is used to fabricate the middle dot in the latch
which concurrently acts as a charge leakage suppressor. This latch has no
parasitic dots, therefore the background charge compensation procedure is
greatly simplified. We discuss the origins of charge leakage suppression and
possible applications of granular metal dots for various single-electron
circuits.Comment: 21 pages, 4 figure
Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
Let X be an algebraic variety with an action of an algebraic group G. Suppose
X has a full exceptional collection of sheaves, and these sheaves are invariant
under the action of the group. We construct a semiorthogonal decomposition of
bounded derived category of G-equivariant coherent sheaves on X into
components, equivalent to derived categories of twisted representations of the
group. If the group is finite or reductive over the algebraically closed field
of zero characteristic, this gives a full exceptional collection in the derived
equivariant category. We apply our results to particular varieties such as
projective spaces, quadrics, Grassmanians and Del Pezzo surfaces.Comment: 28 pages, uses XY-pi
Structure of 2-Methyl-5,6,7-triphenyl-6,7-dihydropyrazolo[2,3-\u3cem\u3ea\u3c/em\u3e]pyrimidine
C25H21N3, Mr = 363.46, monoclinic, P21/n, a = 9.245 (2), b = 23.502 (5), c = 9.340 (2) Γ
, Ξ²= 103.50(3)Β°, V=1973.3(2) Γ
3, Z=4, Dx= 1.220 (2) g cm-3, Ξ» (Mo KΞ± )= 0.71069 Γ
, ΞΌ = 0.068 cm-1, F(000) = 768, T= 292 K, R = 0.091 for 1442 unique observed reflections. The dihydropyrimidine ring adopts a distorted sofa conformation. The aryl substituents on the saturated C atoms have an axial orientation
Bound, virtual and resonance -matrix poles from the Schr\"odinger equation
A general method, which we call the potential -matrix pole method, is
developed for obtaining the -matrix pole parameters for bound, virtual and
resonant states based on numerical solutions of the Schr\"odinger equation.
This method is well-known for bound states. In this work we generalize it for
resonant and virtual states, although the corresponding solutions increase
exponentially when . Concrete calculations are performed for the
ground and the first excited states of , the resonance
states (, ), low-lying states of and
, and the subthreshold resonances in the proton-proton system. We
also demonstrate that in the case the broad resonances their energy and width
can be found from the fitting of the experimental phase shifts using the
analytical expression for the elastic scattering -matrix. We compare the
-matrix pole and the -matrix for broad resonance in
Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and
4 table
Π‘ΠΈΠ½ΡΠ΅Π· ΡΠ° N-Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ Π΄ΡΠ΅ΡΠΈΠ» 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ²
It has been shown that the ternary condensation of oxaloacetic ester (diethyl 2-oxosuccinate), aromatic aldehydesΒ and 3-amino-1,2,4-triazole or 5-aminotetrazole in dimethylformamide results in formation of the corresponding diethyl 7-aryl-4,7-dihydroazolo[1,5-a]pyrimidin-5,6-dicarboxylates. By 1H NMR spectroscopy (according to the data of the chemical shifts of C(2)H-protons for the corresponding N(4)H- and N(4)-methylderivatives ofΒ 7-phenyl-4,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidin-5,6-dicarboxylate) it has been found that alkylation of 4,7-dihydro[1,2,4]azolo[1,5-a]pyrimidin-5,6-dicarboxylates in the acetonitrileβsaturated water alkali system leads selectively to formation of N(4)-alkyl derivatives. Both the starting compounds obtained and their N(4)-methylsubstitutedΒ analogues together with relative diethyl 4-aryl-3,4-dihydropyrimidin-2(1H)-on-5,6-dicarboxylates, 6-unsubstitutedΒ 4-aryl-3,4-dihydropyrimidin-2(1H)-on-5-dicarboxylates and the derivatives of 6-COR-7-aryl-4,7-dihydro[1,2,4] triazolo[1,5-a]pyrimidines are the promising objects for studying benzyl C(7)-functionalization of 4,7-dihydroazoloΒ 1,5-a]pyrimidines, as well as of reactions associated with the presence of double C=C-bonds activated by twoΒ electron withdrawing groups. Obtaining of the key N(4)H- and N(4)Me-derivatives of 7-phenyl-4,7-dihydro[1,2,4]Β triazolo- and tetrazolo[1,5-a]pyrimidin-5,6-dicarboxylates also opens the way to the research of biological propertiesΒ of the compounds of this class. It is noteworthy that being a three-component one the reaction studied, without any doubts, are appropriate for the synthesis of the derivatives of 7-aryl-4,7-dihydro[1,2,4]triazolo- andΒ tetrazolo[1,5-a]pyrimidines containing two electron withdrawing substituents in positions 5 and 6.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Π°Ρ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΡ ΡΠ°Π²Π΅Π»Π΅Π²ΠΎΡΠΊΡΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠΈΡΠ° (Π΄ΠΈΡΡΠΈΠ» 2-ΠΎΠΊΡΠΎΡΡΠΊΡΠΈΠ½Π°ΡΠ°),Β Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΠΎΠ² ΠΈ 3-Π°ΠΌΠΈΠ½ΠΎ-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»Π° ΠΈΠ»ΠΈ 5-Π°ΠΌΠΈΠ½ΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»Π° Π² Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π΄ΠΈΡΡΠΈΠ» 7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ². Π‘ ΠΏΠΎΠΌΠΎΡΡΡ 1Π Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΄Π²ΠΈΠ³ΠΎΠ² ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² Π‘(2)HΒ Π΄Π»Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
N(4)H- ΠΈ N(4)ΠΠ΅-ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
Π΄ΠΈΡΡΠΈΠ» 7-ΡΠ΅Π½ΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]Β ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π°Π»ΠΊΠΈΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ 7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ² Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»-Π½Π°ΡΡΡΠ΅Π½Π½Π°Ρ Π²ΠΎΠ΄Π½Π°Ρ ΡΠ΅Π»ΠΎΡΡ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ N(4)-Π°Π»ΠΊΠΈΠ»ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
. ΠΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΈΡ
N(4)-ΠΌΠ΅ΡΠΈΠ»Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈ Π½Π°ΡΡΠ΄Ρ Ρ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ Π΄ΠΈΡΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ, 6-Π½Π΅Π·Π°ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ ΠΈΒ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ 6-COR-7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ² ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΎΠΉ Π‘(7)-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ 4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΉ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ C=C-ΡΠ²ΡΠ·ΠΈ, Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π²ΡΠΌΡ Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΠΌΠΈ Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ»ΡΡΠ΅Π²ΡΡ
N(4)H- ΠΈ N(4)ΠΠ΅-ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
7-ΡΠ΅Π½ΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΠΈ ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠΊΡΡΠ²Π°Π΅Ρ ΠΏΡΡΡ ΠΊ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΠΌΒ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°. ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½Π°Ρ ΡΠ΅Π°ΠΊΡΠΈΡ, ΡΠ²Π»ΡΡΡΡ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ, Π±Π΅Π·ΡΡΠ»ΠΎΠ²Π½ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΈΡ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΎΡΠ½ΡΡ
Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΠΈ ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π΄Π²Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΡΡ
Π·Π°ΠΌΠ΅ΡΡΠΈΡΠ΅Π»Ρ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
5 ΠΈ 6.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΠΎ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ ΡΠ°Π²Π»Π΅Π²ΠΎΠΎΡΡΠΎΠ²ΠΎΠ³ΠΎ Π΅ΡΡΠ΅ΡΡ (Π΄ΡΠ΅ΡΠΈΠ» 2-ΠΎΠΊΡΠΎΡΡΠΊΡΠΈΠ½Π°ΡΡ), Π°ΡΠΎΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
Π°Π»ΡΠ΄Π΅Π³ΡΠ΄ΡΠ² ΡΠ° 3-Π°ΠΌΡΠ½ΠΎ-1,2,4-ΡΡΠΈΠ°Π·ΠΎΠ»Ρ Π°Π±ΠΎ 5-Π°ΠΌΡΠ½ΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»Ρ Π² Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΡΠ΄Ρ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΒ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
Π΄ΡΠ΅ΡΠΈΠ» 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ². ΠΠ° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡΒ 1Π Π―ΠΠ -ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ (Π·Π° Π΄Π°Π½ΠΈΠΌΠΈ ΠΏΡΠΎ Ρ
ΡΠΌΡΡΠ½Ρ Π·ΡΡΠ²ΠΈ ΡΠΈΠ³Π½Π°Π»ΡΠ² ΠΏΡΠΎΡΠΎΠ½ΡΠ² Π‘(2)Π Π΄Π»Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΈΡ
N(4)H- ΡΠ°Β N(4)Me-ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
Π΄ΡΠ΅ΡΠΈΠ» 7-ΡΠ΅Π½ΡΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ²) Π²ΡΡΠ°-Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π°Π»ΠΊΡΠ»ΡΠ²Π°Π½Π½Ρ 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ² Ρ ΡΠΈΡΡΠ΅ΠΌΡ Π°ΡΠ΅ΡΠΎΠ½ΡΡΡΠΈΠ»Π½Π°ΡΠΈΡΠ΅Π½ΠΈΠΉ Π²ΠΎΠ΄Π½ΠΈΠΉ Π»ΡΠ³ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ N(4)-Π°Π»ΠΊΡΠ»ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
. Π―ΠΊ ΠΎΡΡΠΈΠΌΠ°Π½Ρ Π²ΠΈΡ
ΡΠ΄Π½ΡΒ ΡΠΏΠΎΠ»ΡΠΊΠΈ, ΡΠ°ΠΊ Ρ ΡΡ
Π½Ρ N(4)-ΠΌΠ΅ΡΠΈΠ»Π·Π°ΠΌΡΡΠ΅Π½Ρ Π°Π½Π°Π»ΠΎΠ³ΠΈ ΠΏΠΎΡΡΠ΄ Π·Ρ ΡΠΏΠΎΡΡΠ΄Π½Π΅Π½ΠΈΠΌΠΈ Π΄ΡΠ΅ΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ, 6-Π½Π΅Π·Π°ΠΌΡΡΠ΅Π½ΠΈΠΌΠΈ Π΅ΡΠΈΠ» 4-Π°ΡΠΈΠ»-3,4-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-2(1Π)-ΠΎΠ½-5-ΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΠ°ΠΌΠΈ ΡΠ° ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌΠΈ 6-COR-7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ² Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΈΠΌΠΈ ΠΎΠ±βΡΠΊΡΠ°ΠΌΠΈ Π΄Π»Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π±Π΅Π½Π·ΠΈΠ»ΡΠ½ΠΎΡ Π‘(7)-ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ·Π°ΡΡΡ 4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ², Π° ΡΠ°ΠΊΠΎΠΆ ΡΠ΅Π°ΠΊΡΡΠΉ,Β ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΡ
Π· Π½Π°ΡΠ²Π½ΡΡΡΡ ΠΏΠΎΠ΄Π²ΡΠΉΠ½ΠΎΠ³ΠΎ C=C-Π·Π²βΡΠ·ΠΊΡ, Π°ΠΊΡΠΈΠ²ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π΄Π²ΠΎΠΌΠ° Π°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½ΠΈΠΌΠΈ Π³ΡΡΠΏΠ°ΠΌΠΈ. ΠΡΡΠΈΠΌΠ°Π½Π½ΡΒ ΠΊΠ»ΡΡΠΎΠ²ΠΈΡ
N(4)H- Ρ N(4)ΠΠ΅-ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
7-ΡΠ΅Π½ΡΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΡΠ° ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5,6-Π΄ΠΈΠΊΠ°ΡΠ±ΠΎΠΊΡΠΈΠ»Π°ΡΡΠ² ΡΠ°ΠΊΠΎΠΆ Π²ΡΠ΄ΠΊΡΠΈΠ²Π°Ρ ΡΠ»ΡΡ
Π΄ΠΎ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΡΠΏΠΎΠ»ΡΠΊ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡ. ΠΡΠ΄Π·Π½Π°ΡΠΈΠΌΠΎ,Β ΡΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π° ΡΠ΅Π°ΠΊΡΡΡ, Π±ΡΠ΄ΡΡΠΈ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ, Π±Π΅Π·ΡΠΌΠΎΠ²Π½ΠΎ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈΡΡ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½ΡΒ ΠΊΠΎΠΌΠ±ΡΠ½Π°ΡΠΎΡΠ½ΠΈΡ
Π±ΡΠ±Π»ΡΠΎΡΠ΅ΠΊ ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
7-Π°ΡΠΈΠ»-4,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎ[1,2,4]ΡΡΠΈΠ°Π·ΠΎΠ»ΠΎ- ΡΠ° ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΡΠ²,Β ΡΠΎ ΠΌΡΡΡΡΡΡ Π΄Π²Π° Π΅Π»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ°ΠΊΡΠ΅ΠΏΡΠΎΡΠ½Ρ Π·Π°ΠΌΡΡΠ½ΠΈΠΊΠΈ Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ
5 ΡΠ° 6
Anisotropic fragmentation in low-energy dissociative recombination
On a dense energy grid reaching up to 75 meV electron collision energy the
fragmentation angle and the kinetic energy release of neutral dissociative
recombination fragments have been studied in a twin merged beam experiment. The
anisotropy described by Legendre polynomials and the extracted rotational state
contributions were found to vary on a likewise narrow energy scale as the
rotationally averaged rate coefficient. For the first time angular dependences
higher than 2 order could be deduced. Moreover, a slight anisotropy at
zero collision energy was observed which is caused by the flattened velocity
distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings
of DR 2007, a symposium on Dissociative Recombination held in Ameland, The
Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in
S. Novotny, PRL 100, 193201 (2008
Energy-sensitive imaging detector applied to the dissociative recombination of D2H+
We report on an energy-sensitive imaging detector for studying the
fragmentation of polyatomic molecules in the dissociative recombination of fast
molecular ions with electrons. The system is based on a large area (10 cm x 10
cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and
128 vertical strips, whose pulse height information is read out individually.
The setup allows to uniquely identify fragment masses and is thus capable of
measuring branching ratios between different fragmentation channels, kinetic
energy releases, as well as breakup geometries, as a function of the relative
ion-electron energy. The properties of the detection system, which has been
installed at the TSR storage ring facility of the Max-Planck Institute for
Nuclear Physics in Heidelberg, is illustrated by an investigation of the
dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A
huge isotope effect is observed when comparing the relative branching ratio
between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is
measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is
found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review
Equivalences between GIT quotients of Landau-Ginzburg B-models
We define the category of B-branes in a (not necessarily affine)
Landau-Ginzburg B-model, incorporating the notion of R-charge. Our definition
is a direct generalization of the category of perfect complexes. We then
consider pairs of Landau-Ginzburg B-models that arise as different GIT
quotients of a vector space by a one-dimensional torus, and show that for each
such pair the two categories of B-branes are quasi-equivalent. In fact we
produce a whole set of quasi-equivalences indexed by the integers, and show
that the resulting auto-equivalences are all spherical twists.Comment: v3: Added two references. Final version, to appear in Comm. Math.
Phy
The first data on the infestation of the parti-coloured bat, Vespertilio murinus (Chiroptera, Vespertilionidae), with gamasid mites, Steatonyssus spinosus (Mesostigmata, Gamasina, Macronyssidae)
This article presents one of the very few records of a macronyssid mite (Mesostigmata, Gamasina, Macronyssidae) infestation of vesper bats (Chiroptera, Vespertilionidae). It is the first report of the influence of host parameters on the infestation of the parti-coloured bat, Vespertilio murinus, by the mite Steatonyssus spinosus. It has been shown that the infestation varies considerably throughout the host's occupation of summer roosts and the highest infestation was observed in the post-lactation period. Female bats are infested significantly more intensively than male bats due to changes in their immune status during pregnancy and lactation. The infestation decreases in the period when the breeding colony disbands due to both roost switching and the intensification of grooming during this period. Β© Russian Journal Of Theriology, 2017
- β¦