740 research outputs found

    Asymmetry of localised states in a single quantum ring: polarization dependence of excitons and biexcitons

    Full text link
    We performed spectroscopic studies of a single GaAs quantum ring with an anisotropy in the rim height. The presence of an asymmetric localised state was suggested by the adiabatic potential. The asymmetry was investigated in terms of the polarization dependence of excitons and biexcitons, where a large energy di erence (0.8 meV) in the exciton emission energy for perpendicular polarizations was observed and the oscillator strengths were also compared using the photoluminescence decay rate. For perpendicular polarizations the biexciton exhibits twice the energy di erence seen for the exciton, a fact that may be attributed to a possible change in the selection rules for the lowered symmetry.Comment: accepted in Applied physics Letter

    Excited exciton and biexciton localised states in a single quantum ring

    Full text link
    We observe excited exciton and biexciton states of localised excitons in an anisotropic quantum ring, where large polarisation asymmetry supports the presence of a crescent-like localised structure. We also find that saturation of the localised ground state exciton with increasing excitation can be attributed to relatively fast dissociation of biexcitons (? 430 ps) compared to slow relaxation from the excited state to the ground state (? 1000 ps). As no significant excitonic Aharonov-Bohm oscillations occur up to 14 T, we conclude that phase coherence around the rim is inhibited as a consequence of height anisotropy in the quantum ring.Comment: 4 pages, 4 figure

    Monitoring stimulated emission at the single photon level in one-dimensional atoms

    Get PDF
    We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde

    Open-access data is uncovering past responses of biodiversity to global environmental change

    Get PDF
    Damien A. Fordham and David Nogues-Brav

    Exchange bias effect in the phase separated Nd_{1-x}Sr_{x}CoO_3 at the spontaneous ferromagnetic/ferrimagnetic interface

    Full text link
    We report the new results of exchange bias effect in Nd_{1-x}Sr_{x}CoO_3 for x = 0.20 and 0.40, where the exchange bias phenomenon is involved with the ferrimagnetic (FI) state in a spontaneously phase separated system. The zero-field cooled magnetization exhibits the FI (T_{FI}) and ferromagnetic (T_C) transitions at ~ 23 and \sim 70 K, respectively for x = 0.20. The negative horizontal and positive vertical shifts of the magnetic hysteresis loops are observed when the system is cooled through T_{FI} in presence of a positive static magnetic field. Training effect is observed for x = 0.20, which could be interpreted by a spin configurational relaxation model. The unidirectional shifts of the hysteresis loops as a function of temperature exhibit the absence of exchange bias above T_{FI} for x = 0.20. The analysis of the cooling field dependence of exchange bias field and magnetization indicates that the ferromagnetic (FM) clusters consist of single magnetic domain with average size around \sim 20 and ~ 40 \AA ~ for x = 0.20 and 0.40, respectively. The sizes of the FM clusters are close to the percolation threshold for x = 0.20, which grow and coalesce to form the bigger size for x = 0.40 resulting in a weak exchange bias effect.Comment: 9 pages, 9 figure

    Impact of Yamoussoukro lakes water on lettuce quality

    Get PDF
    Waters from lakes, in Yamoussoukro city (Cote d'Ivoire), are usually used for legumes irrigation. However, these lakes were found to be polluted in previous works, inducing probably legume toxicity. The purpose of this work is to draw the relationship between water quality and legume (lettuce) one via their respective physical and chemical characteristics. This study pointed out that, even if lakes were polluted, their characteristics are in the limit of the irrigation water quality standard. In addition, lettuce samples, drawn from the surroundings of lake, respect also FAO quality standard. They are, therefore, good for consumption, and no strong relationship is found to exist between irrigation water quality and lettuce one. Moreover, we found that this water does not constitute a negative factor for environment. Journal of Applied Sciences and Environmental Management Vol. 10(1) 2006: 9-1

    A calcium ion in a cavity as a controlled single-photon source

    Get PDF
    We present a single calcium ion, coupled to a high-finesse cavity, as an almost ideal system for the controlled generation of single photons. Photons from a pump beam are Raman-scattered by the ion into the cavity mode, which subsequently emits the photon into a well-defined output channel. In contrast with comparable atomic systems, the ion is localized at a fixed position in the cavity mode for indefinite times, enabling truly continuous operation of the device. We have performed numeric calculations to assess the performance of the system and present the first experimental indication of single-photon emission in our set-up

    Trapping of ultra-cold atoms with the magnetic field of vortices in a thin film superconducting micro-structure

    Full text link
    We store and control ultra-cold atoms in a new type of trap using magnetic fields of vortices in a high temperature superconducting micro-structure. This is the first time ultra-cold atoms have been trapped in the field of magnetic flux quanta. We generate the attractive trapping potential for the atoms by combining the magnetic field of a superconductor in the remanent state with external homogeneous magnetic fields. We show the control of crucial atom trap characteristics such as an efficient intrinsic loading mechanism, spatial positioning of the trapped atoms and the vortex density in the superconductor. The measured trap characteristics are in good agreement with our numerical simulations.Comment: 4pages, comments are welcom

    Trapping of single atoms in cavity QED

    Get PDF
    By integrating the techniques of laser cooling and trapping with those of cavity quantum electrodynamics (QED), single Cesium atoms have been trapped within the mode of a small, high finesse optical cavity in a regime of strong coupling. The observed lifetime for individual atoms trapped within the cavity mode is τ28\tau \approx 28ms, and is limited by fluctuations of light forces arising from the far-detuned intracavity field. This initial realization of trapped atoms in cavity QED should enable diverse protocols in quantum information science.Comment: 4 pages, 4 figure

    Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy

    Get PDF
    We acknowledge the support by the ERC Starting Grant PICSEN, contract no. 306387. D.E.R. is grateful for financial support from the DAAD within the P.R.I.M.E. program.A detailed understanding of the population and coherence dynamics in optically driven individual emitters in solids and their signatures in ultrafast nonlinear-optical signals is of prime importance for their applications in future quantum and optical technologies. In a combined experimental and theoretical study on exciton complexes in single semiconductor quantum dots we reveal a detailed picture of the dynamics employing three-beam polarization-resolved four-wave mixing (FWM) micro-spectroscopy. The oscillatory dynamics of the FWM signals in the exciton-biexciton system is governed by the fine-structure splitting and the biexciton binding energy in an excellent quantitative agreement between measurement and analytical description. The analysis of the excitation conditions exhibits a dependence of the dynamics on the specific choice of polarization configuration, pulse areas and temporal ordering of driving fields. The interplay between the transitions in the four-level exciton system leads to rich evolution of coherence and population. Using two-dimensional FWM spectroscopy we elucidate the exciton-biexciton coupling and identify neutral and charged exciton complexes in a single quantum dot. Our investigations thus clearly reveal that FWM spectroscopy is a powerful tool to characterize spectral and dynamical properties of single quantum structures.PostprintPostprintPeer reviewe
    corecore