180 research outputs found

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    Region-based Skin Color Detection.

    Get PDF
    Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on the individual pixels. This paper presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection method on the popular Compaq dataset (Jones and Rehg, 2002). Color and spatial distance based clustering technique is used to extract the regions from the images, also known as superpixels. In the first step, our technique uses the state-of-the-art non-parametric pixel-based skin color classifier (Jones and Rehg, 2002) which we call the basic skin color classifier. The pixel-based skin color evidence is then aggregated to classify the superpixels. Finally, the Conditional Random Field (CRF) is applied to further improve the results. As CRF operates over superpixels, the computational overhead is minimal. Our technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images

    Detecting indicators of cognitive impairment via Graph Convolutional Networks

    Get PDF
    While the life expectancy is on the rise all over the world, more people face health related problems such as cognitive decline. Dementia is a name used to describe progressive brain syndromes affecting memory, thinking, behaviour and emotion. People suffering from dementia may lose their abilities to perform daily life activities and they become on their caregivers. Hence, detecting the indicators of cognitive decline and warning the caregivers and medical doctors for further diagnosis would be helpful. In this study, we tackle the problem of activity recognition and abnormal behaviour detection in the context of dementia by observing daily life patterns of elderly people. Since there is no real-world data available, firstly a method is presented to simulate abnormal behaviour that can be observed in daily activity patterns of dementia sufferers. Secondly, Graph Convolutional Networks (GCNs) are exploited to recognise activities based on their granular-level sensor activations. Thirdly, abnormal behaviour related to dementia is detected using activity recognition confidence probabilities. Lastly, GCNs are compared against the state-of-the-art methods. The results obtained indicate that GCNs are able to recognise activities and flag abnormal behaviour related to dementia

    Ni–Zn hydroxide-based bi-phase multiscale porous nanohybrids : physico-chemical properties

    Get PDF
    Please read abstract in the article.The Algerian minister programhttps://link.springer.com/journal/132042020-05-25hj2020Physic

    Reelin Controls Progenitor Cell Migration in the Healthy and Pathological Adult Mouse Brain

    Get PDF
    Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair

    Quantum nanomagnets and nuclear spins: an overview

    Full text link
    This mini-review presents a simple and accessible summary on the fascinating physics of quantum nanomagnets coupled to a nuclear spin bath. These chemically synthesized systems are an ideal test ground for the theories of decoherence in mesoscopic quantum degrees of freedom, when the coupling to the environment is local and not small. We shall focus here on the most striking quantum phenomenon that occurs in such nanomagnets, namely the tunneling of their giant spin through a high anisotropy barrier. It will be shown that perturbative treatments must be discarded, and replaced by a more sophisticated formalism where the dynamics of the nanomagnet and the nuclei that couple to it are treated together from the beginning. After a critical review of the theoretical predictions and their experimental verification, we continue with a set of experimental results that challenge our present understanding, and outline the importance of filling also this last gap in the theory.Comment: 14 pages, 3 figures. Chapter in the Proceedings of the 2006 Les Houches summer school "Quantum Magnetism", ed. B. Barbara & Y. Imry, Springer (2007

    Neurogenesis in the chronic lesions of multiple sclerosis

    Get PDF
    Subcortical white matter in the adult human brain contains a population of interneurons that helps regulate cerebral blood flow. We investigated the fate of these neurons following subcortical white matter demyelination. Immunohistochemistry was used to examine neurons in normal-appearing subcortical white matter and seven acute and 59 chronic demyelinated lesions in brains from nine patients with multiple sclerosis and four controls. Seven acute and 44 of 59 chronic multiple sclerosis lesions had marked neuronal loss. Compared to surrounding normal-appearing white matter, the remaining 15 chronic multiple sclerosis lesions contained a 72% increase in mature interneuron density, increased synaptic densities and cells with phenotypic characteristics of immature neurons. Lesion areas with increased neuron densities contained a morphologically distinct population of activated microglia. Subventricular zones contiguous with demyelinated lesions also contained an increase in cells with phenotypes of neuronal precursors. These results support neurogenesis in a subpopulation of demyelinated subcortical white matter lesions in multiple sclerosis brains

    Convergence of Cells from the Progenitor Fraction of Adult Olfactory Bulb Tissue to Remyelinating Glia in Demyelinating Spinal Cord Lesions

    Get PDF
    Progenitor cells isolated from adult brain tissue are important tools for experimental studies of remyelination. Cells harvested from neurogenic regions in the adult brain such as the subependymal zone have demonstrated remyelination potential. Multipotent cells from the progenitor fraction have been isolated from the adult olfactory bulb (OB) but their potential to remyelinate has not been studied. cell bodies adjacent to and surrounding peripheral-type myelin rings.We report that neural cells from the progenitor fraction of the adult rat OB grown in monolayers can be expanded for several passages in culture and that upon transplantation into a demyelinated spinal cord lesion provide extensive remyelination without ectopic neuronal differentiation

    Awareness of cognitive decline trajectories in asymptomatic individuals at risk for AD

    Get PDF
    Background: Lack of awareness of cognitive decline (ACD) is common in late-stage Alzheimer’s disease (AD). Recent studies showed that ACD can also be reduced in the early stages. Methods: We described different trends of evolution of ACD over 3 years in a cohort of memory-complainers and their association to amyloid burden and brain metabolism. We studied the impact of ACD at baseline on cognitive scores’ evolution and the association between longitudinal changes in ACD and in cognitive score. Results: 76.8% of subjects constantly had an accurate ACD (reference class). 18.95% showed a steadily heightened ACD and were comparable to those with accurate ACD in terms of demographic characteristics and AD biomarkers. 4.25% constantly showed low ACD, had significantly higher amyloid burden than the reference class, and were mostly men. We found no overall effect of baseline ACD on cognitive scores’ evolution and no association between longitudinal changes in ACD and in cognitive scores. Conclusions: ACD begins to decrease during the preclinical phase in a group of individuals, who are of great interest and need to be further characterized. Trial registration: The present study was conducted as part of the INSIGHT-PreAD study. The identification number of INSIGHT-PreAD study (ID-RCB) is 2012-A01731-42

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons
    corecore