70 research outputs found

    Viral complementation allows HIV-1 replication without integration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integration of HIV-1 DNA into cellular chromatin is required for high levels of viral gene expression and for the production of new virions. However, the majority of HIV-1 DNA remains unintegrated and is generally considered a replicative dead-end. A limited amount of early gene expression from unintegrated DNA has been reported, but viral replication does not proceed further in cells which contain only unintegrated DNA. Multiple infection of cells is common, and cells that are productively infected with an integrated provirus frequently also contain unintegrated HIV-1 DNA. Here we examine the influence of an integrated provirus on unintegrated HIV-1 DNA (uDNA).</p> <p>Results</p> <p>We employed reporter viruses and quantitative real time PCR to examine gene expression and virus replication during coinfection with integrating and non-integrating HIV-1. Most cells which contained only uDNA displayed no detected expression from fluorescent reporter genes inserted into early (Rev-independent) and late (Rev-dependent) locations in the HIV-1 genome. Coinfection with an integrated provirus resulted in a several fold increase in the number of cells displaying uDNA early gene expression and efficiently drove uDNA into late gene expression. We found that coinfection generates virions which package and deliver uDNA-derived genomes into cells; in this way uDNA completes its replication cycle by viral complementation. uDNA-derived genomes undergo recombination with the integrated provirus-derived genomes during second round infection.</p> <p>Conclusion</p> <p>This novel mode of retroviral replication allows survival of viruses which would otherwise be lost because of a failure to integrate, amplifies the effective amount of cellular coinfection, increases the replicating HIV-1 gene pool, and enhances the opportunity for diversification through errors of polymerization and recombination.</p

    Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells

    Get PDF
    The goal of cancer immunotherapy is the generation of an effective, stable, and self-renewing antitumor T-cell population. One such approach involves the use of high-affinity cancer-specific T-cell receptors in gene-therapy protocols. Here, we present the generation of functional tumor-specific human T cells in vivo from genetically modified human hematopoietic stem cells (hHSC) using a human/mouse chimera model. Transduced hHSC expressing an HLA-A*0201–restricted melanoma-specific T-cell receptor were introduced into humanized mice, resulting in the generation of a sizeable melanoma-specific naïve CD8^+ T-cell population. Following tumor challenge, these transgenic CD8^+ T cells, in the absence of additional manipulation, limited and cleared human melanoma tumors in vivo. Furthermore, the genetically enhanced T cells underwent proper thymic selection, because we did not observe any responses against non–HLA-matched tumors, and no killing of any kind occurred in the absence of a human thymus. Finally, the transduced hHSC established long-term bone marrow engraftment. These studies present a potential therapeutic approach and an important tool to understand better and to optimize the human immune response to melanoma and, potentially, to other types of cancer

    Audio-Visual Speech Timing Sensitivity Is Enhanced in Cluttered Conditions

    Get PDF
    Events encoded in separate sensory modalities, such as audition and vision, can seem to be synchronous across a relatively broad range of physical timing differences. This may suggest that the precision of audio-visual timing judgments is inherently poor. Here we show that this is not necessarily true. We contrast timing sensitivity for isolated streams of audio and visual speech, and for streams of audio and visual speech accompanied by additional, temporally offset, visual speech streams. We find that the precision with which synchronous streams of audio and visual speech are identified is enhanced by the presence of additional streams of asynchronous visual speech. Our data suggest that timing perception is shaped by selective grouping processes, which can result in enhanced precision in temporally cluttered environments. The imprecision suggested by previous studies might therefore be a consequence of examining isolated pairs of audio and visual events. We argue that when an isolated pair of cross-modal events is presented, they tend to group perceptually and to seem synchronous as a consequence. We have revealed greater precision by providing multiple visual signals, possibly allowing a single auditory speech stream to group selectively with the most synchronous visual candidate. The grouping processes we have identified might be important in daily life, such as when we attempt to follow a conversation in a crowded room

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications

    Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset)

    Get PDF
    This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts. Data and metadata are stored on the Open Science Framework website [https://osf.io/mhg94/]

    Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation

    Get PDF
    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation
    • 

    corecore