8,579 research outputs found
Matter wave quantum dots (anti-dots) in ultracold atomic Bose-Fermi mixtures
The properties of ultracold atomic Bose-Fermi mixtures in external potentials
are investigated and the existence of gap solitons of Bose-Fermi mixtures in
optical lattices demonstrated. Using a self-consistent approach we compute the
energy spectrum and show that gap solitons can be viewed as matter wave
realizations of quantum dots (anti-dots) with the bosonic density playing the
role of trapping (expulsive) potential for the fermions. The fermionic states
trapped in the condensate are shown to be at the bottom of the Fermi sea and
therefore well protected from thermal decoherence. Energy levels, filling
factors and parameters dependence of gap soliton quantum dots are also
calculated both numerically and analytically.Comment: Extended version of talk given at the SOLIBEC conference, Almagro,
Spain, 8-12 February 2005. To be published on Phys.Rev.
Hierarchy of boundary driven phase transitions in multi-species particle systems
Interacting systems with driven particle species on a open chain or
chains which are coupled at the ends to boundary reservoirs with fixed particle
densities are considered. We classify discontinuous and continuous phase
transitions which are driven by adiabatic change of boundary conditions. We
build minimal paths along which any given boundary driven phase transition
(BDPT) is observed and reveal kinetic mechanisms governing these transitions.
Combining minimal paths, we can drive the system from a stationary state with
all positive characteristic speeds to a state with all negative characteristic
speeds, by means of adiabatic changes of the boundary conditions. We show that
along such composite paths one generically encounters discontinuous and
continuous BDPTs with taking values depending on
the path. As model examples we consider solvable exclusion processes with
product measure states and particle species and a non-solvable
two-way traffic model. Our findings are confirmed by numerical integration of
hydrodynamic limit equations and by Monte Carlo simulations. Results extend
straightforwardly to a wide class of driven diffusive systems with several
conserved particle species.Comment: 12 pages, 11 figure
Small-amplitude excitations in a deformable discrete nonlinear Schroedinger equation
A detailed analysis of the small-amplitude solutions of a deformed discrete
nonlinear Schr\"{o}dinger equation is performed. For generic deformations the
system possesses "singular" points which split the infinite chain in a number
of independent segments. We show that small-amplitude dark solitons in the
vicinity of the singular points are described by the Toda-lattice equation
while away from the singular points are described by the Korteweg-de Vries
equation. Depending on the value of the deformation parameter and of the
background level several kinds of solutions are possible. In particular we
delimit the regions in the parameter space in which dark solitons are stable in
contrast with regions in which bright pulses on nonzero background are
possible. On the boundaries of these regions we find that shock waves and
rapidly spreading solutions may exist.Comment: 18 pages (RevTex), 13 figures available upon reques
Motor skills in children with primary headache: A pilot case-control study
Background: Headache is the most common painful manifestation in the developmental age, often accompanied by severe disability such as scholastic absenteeism, low quality of academic performance and compromised emotional functioning. The aim of the study is to evaluate praxic abilities in a population of children without aural migraine. Materials and methods: The test population consists of 10 subjects without migraine without aura (MwA), (8 Males) (mean age 8.40, SD ± 1.17) and 11 healthy children (7 Males) (mean age 8.27; SD ± 1.10; p = 0.800). All subjects underwent evaluation of motor coordination skills through the Battery for Children Movement Assessment (M-ABC). Results: The two groups (10 MwA vs 11 Controls) were similar for age (8.40 ± 1.17 vs 8.27 ± 1.10; p = 0.800), sex (p = 0.730), and BMI (p = 0.204). The migraine subjects show an average worse performance than the Movement ABC; specifically, migraineurs show significantly higher total score values (31.00 ± 23.65 vs 4.72 ± 2.61; p = 0.001), manual dexterity (12.10 ± 11.20 vs 2.04 ± 2.65; p = 0.009) and balance (14.85 ± 10.08 vs. 1.04 ± 1.05; p <0.001). The mean percentile of migraine performance is significantly reduced compared to controls (9.00 ± 3.82 vs 51.00 ± 24.34, p <0.001) (Table 1). Conclusion: Migraine can alter many cognitive and executive functions such as motor skills in developmental age
Three dimensional imaging of short pulses
We exploit a slightly noncollinear second-harmonic cross-correlation scheme
to map the 3D space-time intensity distribution of an unknown complex-shaped
ultrashort optical pulse. We show the capability of the technique to
reconstruct both the amplitude and the phase of the field through the coherence
of the nonlinear interaction down to a resolution of 10 m in space and 200
fs in time. This implies that the concept of second-harmonic holography can be
employed down to the sub-ps time scale, and used to discuss the features of the
technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure
Wannier functions of elliptic one-gap potentials
Wannier functions of the one dimensional Schroedinger equation with elliptic
one gap potentials are explicitly constructed. Properties of these functions
are analytically and numerically investigated. In particular we derive an
expression for the amplitude of the Wannier function in the origin, a power
series expansion valid in the vicinity of the origin and an asymptotic
expansion characterizing the decay of the Wannier function at large distances.
Using these results we construct an approximate analytical expression of the
Wannier function which is valid in the whole spatial domain and is in good
agreement with numerical results.Comment: 24 pages, 5 figure
Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis): whole-body MR findings in two siblings with different subcutaneous nodules distribution
Abstract: Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis) is a rare, progressive, autosomal recessive disorder whose main hallmark is the deposition of amorphous hyaline material in soft tissues, with an evolutionary course and health impairment. It may present involvement of subcutaneous or periskeletal soft tissue, or may develop as a visceral infiltration entity with poor prognosis. Very few radiological data about this inherited condition have been reported, due to the extreme rarity of disease. We herein present a case of two siblings, affected by different severity of the disease, with different clinical features. They were examined by whole-body MR (WBMR) in order to assess different lesions localization, to rule out any visceral involvement and any other associated anomalies and to define patients\ue2\u80\u99 management
Adiabatic Compression of Soliton Matter Waves
The evolution of atomic solitary waves in Bose-Einstein condensate (BEC)
under adiabatic changes of the atomic scattering length is investigated. The
variations of amplitude, width, and velocity of soliton are found for both
spatial and time adiabatic variations. The possibility to use these variations
to compress solitons up to very high local matter densities is shown both in
absence and in presence of a parabolic confining potential.Comment: to appear in J.Phys.
- âŠ