Interacting systems with K driven particle species on a open chain or
chains which are coupled at the ends to boundary reservoirs with fixed particle
densities are considered. We classify discontinuous and continuous phase
transitions which are driven by adiabatic change of boundary conditions. We
build minimal paths along which any given boundary driven phase transition
(BDPT) is observed and reveal kinetic mechanisms governing these transitions.
Combining minimal paths, we can drive the system from a stationary state with
all positive characteristic speeds to a state with all negative characteristic
speeds, by means of adiabatic changes of the boundary conditions. We show that
along such composite paths one generically encounters Z discontinuous and
2(K−Z) continuous BDPTs with Z taking values 0≤Z≤K depending on
the path. As model examples we consider solvable exclusion processes with
product measure states and K=1,2,3 particle species and a non-solvable
two-way traffic model. Our findings are confirmed by numerical integration of
hydrodynamic limit equations and by Monte Carlo simulations. Results extend
straightforwardly to a wide class of driven diffusive systems with several
conserved particle species.Comment: 12 pages, 11 figure