Abstract

A detailed analysis of the small-amplitude solutions of a deformed discrete nonlinear Schr\"{o}dinger equation is performed. For generic deformations the system possesses "singular" points which split the infinite chain in a number of independent segments. We show that small-amplitude dark solitons in the vicinity of the singular points are described by the Toda-lattice equation while away from the singular points are described by the Korteweg-de Vries equation. Depending on the value of the deformation parameter and of the background level several kinds of solutions are possible. In particular we delimit the regions in the parameter space in which dark solitons are stable in contrast with regions in which bright pulses on nonzero background are possible. On the boundaries of these regions we find that shock waves and rapidly spreading solutions may exist.Comment: 18 pages (RevTex), 13 figures available upon reques

    Similar works

    Full text

    thumbnail-image

    Available Versions