1,346 research outputs found
Tetramethylenedisulfotetramine
Tetramethylenedisulfotetramine (CAS 80-12-6), commonly referred to as TETS, was first synthesized in 1933 as a condensation product of sulfamide and formaldehyde. TETS was subsequently used as a rodenticide until banned worldwide in 1991. TETS is, however, still available illegally, primarily in rural China, and is responsible for accidental and intentional poisonings that cause a significant number of human deaths annually. TETS induces convulsive seizures mediated by antagonism of γ-amino-butyric acid (GABA)-mediated chloride channels. There are no known antidotes for TETS poisoning, and in cases of severe TETS intoxication that progress to status epilepticus, prognosis is poor even with aggressive anti-convulsant treatment
Accurate retrieval of structural information from laser-induced photoelectron and high-harmonic spectra by few-cycle laser pulses
By analyzing ``exact'' theoretical results from solving the time-dependent
Schr\"odinger equation of atoms in few-cycle laser pulses, we established the
general conclusion that differential elastic scattering and photo-recombination
cross sections of the target ion with {\em free} electrons can be extracted
accurately from laser-generated high-energy electron momentum spectra and
high-order harmonic spectra, respectively. Since both electron scattering and
photoionization (the inverse of photo-recombination) are the conventional means
for interrogating the structure of atoms and molecules, this result shows that
existing few-cycle infrared lasers can be implemented for ultrafast imaging of
transient molecules with temporal resolution of a few femtoseconds.Comment: 4 pages, 4 figure
Ultrahigh harmonics from laser-assisted ion-atom collisions
We present a theoretical analysis of high-order harmonic generation from
ion-atom collisions in the presence of linearly polarized intense laser pulses.
Photons with frequencies significantly higher than in standard atomic
high-harmonic generation are emitted. These harmonics are due to two different
mechanisms: (i) collisional electron capture and subsequent laser-driven
transfer of an electron between projectile and target atom; (ii) reflection of
a laser-driven electron from the projectile leading to recombination at the
parent atom.Comment: 5 pages, 4 figure
Tetramethylenedisulfotetramine alters Ca²⁺ dynamics in cultured hippocampal neurons: mitigation by NMDA receptor blockade and GABA(A) receptor-positive modulation.
Tetramethylenedisulfotetramine (TETS) is a potent convulsant that is considered a chemical threat agent. We characterized TETS as an activator of spontaneous Ca²⁺ oscillations and electrical burst discharges in mouse hippocampal neuronal cultures at 13-17 days in vitro using FLIPR Fluo-4 fluorescence measurements and extracellular microelectrode array recording. Acute exposure to TETS (≥ 2 µM) reversibly altered the pattern of spontaneous neuronal discharges, producing clustered burst firing and an overall increase in discharge frequency. TETS also dramatically affected Ca²⁺ dynamics causing an immediate but transient elevation of neuronal intracellular Ca²⁺ followed by decreased frequency of Ca²⁺ oscillations but greater peak amplitude. The effect on Ca²⁺ dynamics was similar to that elicited by picrotoxin and bicuculline, supporting the view that TETS acts by inhibiting type A gamma-aminobutyric acid (GABA(A)) receptor function. The effect of TETS on Ca²⁺ dynamics requires activation of N-methyl-D-aspartic acid (NMDA) receptors, because the changes induced by TETS were prevented by MK-801 block of NMDA receptors, but not nifedipine block of L-type Ca²⁺ channels. Pretreatment with the GABA(A) receptor-positive modulators diazepam and allopregnanolone partially mitigated TETS-induced changes in Ca²⁺ dynamics. Moreover, low, minimally effective concentrations of diazepam (0.1 µM) and allopregnanolone (0.1 µM), when administered together, were highly effective in suppressing TETS-induced alterations in Ca²⁺ dynamics, suggesting that the combination of positive modulators of synaptic and extrasynaptic GABA(A) receptors may have therapeutic potential. These rapid throughput in vitro assays may assist in the identification of single agents or combinations that have utility in the treatment of TETS intoxication
Semiclassical two-step model for strong-field ionization
We present a semiclassical two-step model for strong-field ionization that
accounts for path interferences of tunnel-ionized electrons in the ionic
potential beyond perturbation theory. Within the framework of a classical
trajectory Monte-Carlo representation of the phase-space dynamics, the model
employs the semiclassical approximation to the phase of the full quantum
propagator in the exit channel. By comparison with the exact numerical solution
of the time-dependent Schr\"odinger equation for strong-field ionization of
hydrogen, we show that for suitable choices of the momentum distribution after
the first tunneling step, the model yields good quantitative agreement with the
full quantum simulation. The two-dimensional photoelectron momentum
distributions, the energy spectra, and the angular distributions are found to
be in good agreement with the corresponding quantum results. Specifically, the
model quantitatively reproduces the fan-like interference patterns in the
low-energy part of the two-dimensional momentum distributions as well as the
modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure
Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls.
ObjectivePerinatal exposure to polychlorinated biphenyls (PCBs) is associated with decreased IQ scores, impaired learning and memory, psychomotor difficulties, and attentional deficits in children. It is postulated that these neuropsychological deficits reflect altered patterns of neuronal connectivity. To test this hypothesis, we examined the effects of developmental PCB exposure on dendritic growth.MethodsRat dams were gavaged from gestational day 6 through postnatal day (PND) 21 with vehicle (corn oil) or the commercial PCB mixture Aroclor 1254 (6 mg/kg/day). Dendritic growth and molecular markers were examined in pups during development.ResultsGolgi analyses of CA1 hippocampal pyramidal neurons and cerebellar Purkinje cells indicated that developmental exposure to PCBs caused a pronounced age-related increase in dendritic growth. Thus, even though dendritic lengths were significantly attenuated in PCB-treated animals at PND22, the rate of growth was accelerated at later ages such that by PND60, dendritic growth was comparable to or even exceeded that observed in vehicle controls. Quantitative reverse transcriptase polymerase chain reaction analyses demonstrated that from PND4 through PND21, PCBs generally increased expression of both spinophilin and RC3/neurogranin mRNA in the hippocampus, cerebellum, and cortex with the most significant increases observed in the cortex.ConclusionsThis study demonstrates that developmental PCB exposure alters the ontogenetic profile of dendritogenesis in critical brain regions, supporting the hypothesis that disruption of neuronal connectivity contributes to neuropsychological deficits seen in exposed children
Molecular imaging using high-order harmonic generation and above-threshold ionization
Accurate molecular imaging via high-order harmonic generation relies on
comparing the harmonic emission from a molecule and an adequate reference
system. However, an ideal reference atom with the same ionization properties as
the molecule does not always exist. We show that for suitably designed, very
short laser pulses, a one-to-one mapping between high-order harmonic
frequencies and electron momenta in above-threshold ionization exists.
Comparing molecular and atomic momentum distributions then provides the
electron return amplitude in the molecule for every harmonic frequency. We show
that the method retrieves the molecular recombination transition moments highly
accurately, even with suboptimal reference atoms.Comment: 5 pages, 4 figure
Theory of high-order harmonic generation from molecules by intense laser pulses
We show that high-order harmonics generated from molecules by intense laser
pulses can be expressed as the product of a returning electron wave packet and
the photo-recombination cross section (PRCS) where the electron wave packet can
be obtained from simple strong-field approximation (SFA) or from a companion
atomic target. Using these wave packets but replacing the PRCS obtained from
SFA or from the atomic target by the accurate PRCS from molecules, the
resulting HHG spectra are shown to agree well with the benchmark results from
direct numerical solution of the time-dependent Schr\"odinger equation, for the
case of H in laser fields. The result illustrates that these powerful
theoretical tools can be used for obtaining high-order harmonic spectra from
molecules. More importantly, the results imply that the PRCS extracted from
laser-induced HHG spectra can be used for time-resolved dynamic chemical
imaging of transient molecules with temporal resolutions down to a few
femtoseconds.Comment: 10 pages, 5 figure
Pair-distribution functions of the two-dimensional electron gas
Based on its known exact properties and a new set of extensive fixed-node
reptation quantum Monte Carlo simulations (both with and without backflow
correlations, which in this case turn out to yield negligible improvements), we
propose a new analytical representation of (i) the spin-summed
pair-distribution function and (ii) the spin-resolved potential energy of the
ideal two-dimensional interacting electron gas for a wide range of electron
densities and spin polarization, plus (iii) the spin-resolved pair-distribution
function of the unpolarized gas. These formulae provide an accurate reference
for quantities previously not available in analytic form, and may be relevant
to semiconductor heterostructures, metal-insulator transitions and quantum dots
both directly, in terms of phase diagram and spin susceptibility, and
indirectly, as key ingredients for the construction of new two-dimensional spin
density functionals, beyond the local approximation.Comment: 12 pages, 10 figures; misprints correcte
- …