1,346 research outputs found

    Tetramethylenedisulfotetramine

    Get PDF
    Tetramethylenedisulfotetramine (CAS 80-12-6), commonly referred to as TETS, was first synthesized in 1933 as a condensation product of sulfamide and formaldehyde. TETS was subsequently used as a rodenticide until banned worldwide in 1991. TETS is, however, still available illegally, primarily in rural China, and is responsible for accidental and intentional poisonings that cause a significant number of human deaths annually. TETS induces convulsive seizures mediated by antagonism of γ-amino-butyric acid (GABA)-mediated chloride channels. There are no known antidotes for TETS poisoning, and in cases of severe TETS intoxication that progress to status epilepticus, prognosis is poor even with aggressive anti-convulsant treatment

    Accurate retrieval of structural information from laser-induced photoelectron and high-harmonic spectra by few-cycle laser pulses

    Get PDF
    By analyzing ``exact'' theoretical results from solving the time-dependent Schr\"odinger equation of atoms in few-cycle laser pulses, we established the general conclusion that differential elastic scattering and photo-recombination cross sections of the target ion with {\em free} electrons can be extracted accurately from laser-generated high-energy electron momentum spectra and high-order harmonic spectra, respectively. Since both electron scattering and photoionization (the inverse of photo-recombination) are the conventional means for interrogating the structure of atoms and molecules, this result shows that existing few-cycle infrared lasers can be implemented for ultrafast imaging of transient molecules with temporal resolution of a few femtoseconds.Comment: 4 pages, 4 figure

    Ultrahigh harmonics from laser-assisted ion-atom collisions

    Full text link
    We present a theoretical analysis of high-order harmonic generation from ion-atom collisions in the presence of linearly polarized intense laser pulses. Photons with frequencies significantly higher than in standard atomic high-harmonic generation are emitted. These harmonics are due to two different mechanisms: (i) collisional electron capture and subsequent laser-driven transfer of an electron between projectile and target atom; (ii) reflection of a laser-driven electron from the projectile leading to recombination at the parent atom.Comment: 5 pages, 4 figure

    Tetramethylenedisulfotetramine alters Ca²⁺ dynamics in cultured hippocampal neurons: mitigation by NMDA receptor blockade and GABA(A) receptor-positive modulation.

    Get PDF
    Tetramethylenedisulfotetramine (TETS) is a potent convulsant that is considered a chemical threat agent. We characterized TETS as an activator of spontaneous Ca²⁺ oscillations and electrical burst discharges in mouse hippocampal neuronal cultures at 13-17 days in vitro using FLIPR Fluo-4 fluorescence measurements and extracellular microelectrode array recording. Acute exposure to TETS (≥ 2 µM) reversibly altered the pattern of spontaneous neuronal discharges, producing clustered burst firing and an overall increase in discharge frequency. TETS also dramatically affected Ca²⁺ dynamics causing an immediate but transient elevation of neuronal intracellular Ca²⁺ followed by decreased frequency of Ca²⁺ oscillations but greater peak amplitude. The effect on Ca²⁺ dynamics was similar to that elicited by picrotoxin and bicuculline, supporting the view that TETS acts by inhibiting type A gamma-aminobutyric acid (GABA(A)) receptor function. The effect of TETS on Ca²⁺ dynamics requires activation of N-methyl-D-aspartic acid (NMDA) receptors, because the changes induced by TETS were prevented by MK-801 block of NMDA receptors, but not nifedipine block of L-type Ca²⁺ channels. Pretreatment with the GABA(A) receptor-positive modulators diazepam and allopregnanolone partially mitigated TETS-induced changes in Ca²⁺ dynamics. Moreover, low, minimally effective concentrations of diazepam (0.1 µM) and allopregnanolone (0.1 µM), when administered together, were highly effective in suppressing TETS-induced alterations in Ca²⁺ dynamics, suggesting that the combination of positive modulators of synaptic and extrasynaptic GABA(A) receptors may have therapeutic potential. These rapid throughput in vitro assays may assist in the identification of single agents or combinations that have utility in the treatment of TETS intoxication

    Semiclassical two-step model for strong-field ionization

    Get PDF
    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte-Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schr\"odinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fan-like interference patterns in the low-energy part of the two-dimensional momentum distributions as well as the modulations in the photoelectron angular distributions.Comment: 31 pages, 7 figure

    Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls.

    Get PDF
    ObjectivePerinatal exposure to polychlorinated biphenyls (PCBs) is associated with decreased IQ scores, impaired learning and memory, psychomotor difficulties, and attentional deficits in children. It is postulated that these neuropsychological deficits reflect altered patterns of neuronal connectivity. To test this hypothesis, we examined the effects of developmental PCB exposure on dendritic growth.MethodsRat dams were gavaged from gestational day 6 through postnatal day (PND) 21 with vehicle (corn oil) or the commercial PCB mixture Aroclor 1254 (6 mg/kg/day). Dendritic growth and molecular markers were examined in pups during development.ResultsGolgi analyses of CA1 hippocampal pyramidal neurons and cerebellar Purkinje cells indicated that developmental exposure to PCBs caused a pronounced age-related increase in dendritic growth. Thus, even though dendritic lengths were significantly attenuated in PCB-treated animals at PND22, the rate of growth was accelerated at later ages such that by PND60, dendritic growth was comparable to or even exceeded that observed in vehicle controls. Quantitative reverse transcriptase polymerase chain reaction analyses demonstrated that from PND4 through PND21, PCBs generally increased expression of both spinophilin and RC3/neurogranin mRNA in the hippocampus, cerebellum, and cortex with the most significant increases observed in the cortex.ConclusionsThis study demonstrates that developmental PCB exposure alters the ontogenetic profile of dendritogenesis in critical brain regions, supporting the hypothesis that disruption of neuronal connectivity contributes to neuropsychological deficits seen in exposed children

    Molecular imaging using high-order harmonic generation and above-threshold ionization

    Get PDF
    Accurate molecular imaging via high-order harmonic generation relies on comparing the harmonic emission from a molecule and an adequate reference system. However, an ideal reference atom with the same ionization properties as the molecule does not always exist. We show that for suitably designed, very short laser pulses, a one-to-one mapping between high-order harmonic frequencies and electron momenta in above-threshold ionization exists. Comparing molecular and atomic momentum distributions then provides the electron return amplitude in the molecule for every harmonic frequency. We show that the method retrieves the molecular recombination transition moments highly accurately, even with suboptimal reference atoms.Comment: 5 pages, 4 figure

    Theory of high-order harmonic generation from molecules by intense laser pulses

    Full text link
    We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schr\"odinger equation, for the case of H2+_2^+ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.Comment: 10 pages, 5 figure

    Pair-distribution functions of the two-dimensional electron gas

    Full text link
    Based on its known exact properties and a new set of extensive fixed-node reptation quantum Monte Carlo simulations (both with and without backflow correlations, which in this case turn out to yield negligible improvements), we propose a new analytical representation of (i) the spin-summed pair-distribution function and (ii) the spin-resolved potential energy of the ideal two-dimensional interacting electron gas for a wide range of electron densities and spin polarization, plus (iii) the spin-resolved pair-distribution function of the unpolarized gas. These formulae provide an accurate reference for quantities previously not available in analytic form, and may be relevant to semiconductor heterostructures, metal-insulator transitions and quantum dots both directly, in terms of phase diagram and spin susceptibility, and indirectly, as key ingredients for the construction of new two-dimensional spin density functionals, beyond the local approximation.Comment: 12 pages, 10 figures; misprints correcte
    corecore