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Abstract

We present a semiclassical two-step model for strong-field ionization that accounts for path

interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within

the framework of a classical trajectory Monte-Carlo representation of the phase-space dynamics, the

model employs the semiclassical approximation to the phase of the full quantum propagator in the

exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger

equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum

distribution after the first tunneling step, the model yields good quantitative agreement with the

full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy

spectra, and the angular distributions are found to be in good agreement with the corresponding

quantum results. Specifically, the model quantitatively reproduces the fan-like interference patterns

in the low-energy part of the two-dimensional momentum distributions as well as the modulations

in the photoelectron angular distributions.

PACS numbers: 32.80Fb, 32.80Rm, 32.80 Wr
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I. INTRODUCTION

Strong-field physics is concerned with highly nonlinear phenomena originating from the

interaction of strong laser radiation with atoms and molecules. Above-threshold ionization

(ATI), high-order harmonic generation (HHG), and non-sequential double ionization (NSDI)

are the most well-known examples (see Refs. [1–5] for reviews). Among the main theoretical

approaches used to understand these diverse phenomena are the direct numerical solution

of the time-dependent Schrödinger equation (TDSE), the strong-field approximation (SFA)

[6–8], and semiclassical models applying a classical description of an electron after it has

been released from an atom, e.g., by tunneling ionization [9–11]. The most widely known

examples of semiclassical approaches are the two-step model for ionization [12–14] and the

three-step models for harmonic radiation and rescattering [15, 16]. In the first step of the

two-step model an electron tunnels out of an atom, and in the second step it propagates in

the laser field. The third step involves the rescattering of the returning electron with the

residual ion. Thus the three-step model allows for a qualitative description of rescattering-

induced processes: high-order ATI, HHG, and NSDI.

Although significant progress has been made over the last two decades in development

of the theoretical approaches based on the SFA and, particularly, on the TDSE (see, e.g.,

Refs. [17–19] and references therein), the semiclassical models are still extensively used in

strong-field physics. The reason is that these models have a number of advantages. Indeed,

semiclassical simulations can help to identify the specific mechanisms responsible for the

phenomena under consideration, and provide an illustrative picture in terms of classical

trajectories. For example, the three-step model explained the cutoffs in HHG [20, 21] and

high-order ATI spectra [22], the maximum angles in the photoelectron angular distributions

[23], and the characteristic momenta of recoil ions of the NSDI [24, 25].

In their original formulation, the two-step and three-step models do not take into ac-

count the effect of the Coulomb potential of the parent ion on the electron motion after

ionization. The inclusion of the Coulomb potential into the two-step model allowed to re-

veal the so-called Coulomb focusing effect [26]. Employing classical trajectory Monte-Carlo

(CTMC) simulations for the second step, the Coulomb cusp in the angular distribution of

strong-field ionized electrons could be identified [27]. Among the more recent examples of

application of the semiclassical models with the Coulomb potential are the investigation of
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the so-called “ionization surprise” [28], i.e., the low-energy structures in strong-field ion-

ization by midinfrared pulses [29–37], the study of the angular shifts of the photoelectron

momentum distributions in close to circularly polarized laser fields [38–41], and the analysis

of the nonadiabatic effects in strong-field ionization (see, e.g., Refs. [42–44]). Semiclassical

simulations are often computationally much simpler than the direct numerical solution of

the TDSE. There are still many strong-field problems, for which semiclassical models are

the only feasible approach. Well known examples of the latter category include the NSDI

of atoms by elliptically [45–47] and circularly [48] polarized fields as well as the NSDI of

molecules [49]. Therefore, improvements of the semiclassical models of strong-field phenom-

ena are being sought with the goal to render them quantitatively predictive.

Recently, some progress among these lines has been achieved. For example, a crite-

rion of applicability of the two-step model with the Coulomb potential of the parent ion

was formulated in Ref. [50]. Within a purely classical treatment of the electron dynamics

subsequent to tunnel ionization, interference structures in the photoelectron spectrum and

two-dimensional momentum distribution [51–55] cannot be reproduced. This deficiency has

been overcome by a semiclassical model denoted by the authors of [56] as the “quantum

trajectory Monte-Carlo (QTMC)” 1. This model allows to include interference effects into

the two-step model with the Coulomb potential. Accordingly, each classical trajectory is

associated with a phase determined by the classical action, and the contributions of all

trajectories leading to a given final momentum calculated by a CTMC approach are added

coherently. The QTMC model has already been used in the study of nonadiabatic effects in

tunneling ionization of atoms in elliptically polarized laser fields [44]. A similar approach,

but disregarding the Coulomb potential, was used in Ref. [58] to investigate the holographic

interference patterns in strong-field ionization of N2, O2, and CO2. Very recently, the QTMC

model has been applied to the identification of resonance structures in the low-energy part

of the photoelectron spectra [59] and to the study of the nonadiabatic subcycle electron

dynamics in orthogonally polarized two-color laser fields [60].

The Coulomb-corrected strong-field approximation (CCSFA) [31, 61, 62] has been applied

to analyze results of experiment and theory. The CCSFA invokes first-order perturbation

1 This model should not be confused with another approach termed quantum trajectory Monte-Carlo

(QTMC) that was used for the solution of the Liouville equation for open quantum systems [57]. It

is based on an ensemble of solutions of a stochastic Schrödinger equation each of which correspond to a

quantum trajectory in Hilbert space.
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theory [63] to include the Coulomb potential. Likewise, according to the Supplementary Ma-

terial in Ref. [56], the QTMC model includes the Coulomb effect in a perturbative manner;

a point that we will discuss below. It is, therefore, of interest to formulate a semiclassical

two-step (SCTS) model that accounts for the Coulomb potential beyond the semiclassical

perturbation theory. Our present approach is based on the theory of semiclassical time-

dependent propagators (see, e.g., Ref. [64] for a text-book treatment). Here we derive a

semiclassical expression for the transition amplitude for strong-field ionization that differs

from the one used in the QTMC and CCSFA models improving the agreement with full

quantum simulations.

The paper is organized as follows. In Sec. II we briefly review previous two-step models

that invoke semiclassical approximations at various stages of their development. In Sec. III

we present our semiclassical two-step model that combines the CTMC method for trajectory

sampling with the phase of the semiclassical propagator and discuss its numerical implemen-

tation. The application to the benchmark case of strong-field ionization of atomic hydrogen,

and the comparison with TDSE results are presented in Sec. IV followed by concluding

remarks in Sec. V. Atomic units are used throughout the paper unless indicated otherwise.

II. TWO-STEP MODELS

The two-step models for direct strong-field ionization as well as their three-step extensions

typically invoke semiclassical approximations to the full quantum dynamics at various levels.

We briefly sketch the major steps involved in order to delineate the point of departure of

the present SCTS model. It should be stressed that our model is different from SFA-type

models such as the CCSFA model [31, 61, 62] as the latter are applicable for arbitrary values

of the Keldysh parameter γ = ωκ/F [6] (here ω is the angular frequency of the laser field,

F is the field amplitude, and κ =
√

2Ip, where Ip is the ionization potential). In contrast to

this, we employ instantaneous tunneling ionization rates. The description of the ionization

step by tunneling is expected to be accurate only for small values of the Keldysh parameter,

γ ≪ 1.

The starting point of the semiclassical approximation is the assumption that the (clas-

sical) action in the Feynman propagator is asymptotically large compared to the quantum

action ~ such that the path integral over (in general, non-classical) paths can be performed
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by the saddle-point approximation. Equivalently, the semiclassical approximation (SCA)

can be viewed as the leading term in an ~
n expansion as ~ → 0. Accordingly, the expression

for the matrix element of the semiclassical propagator USC between the initial state at time

t1 and the final state at time t2 (t2 > t1) reads [65–67] (see Refs. [68] and [64] for a text-book

treatment):

〈q2|USC (t2, t1) |q1〉 =
[

−∂
2φ1 (q1, q2) /∂q1∂q2

2πi

]1/2

exp [iφ1 (q1, q2)] . (1)

Here q1 and q2 are the spatial coordinates of a particle at times t1 and t2, respectively, and

the phase φ1 (q1, q2) = S1(q1, q2)/~ is given in terms of the action S1,

S1 (q1, q2) =

∫ t2

t1

{p (t) q̇ (t)−H [q (t) , p (t)]} dt, (2)

where, in turn, H [q (t) , p (t)] is the classical Hamiltonian function as a function of the canon-

ical coordinates q(t) and momenta p(t). For simplicity, we use in Eqs. (1,2) a notation for

1D systems. Our applications in the following account, however, for the full dimensionality

of the problems. The prefactor in Eq. (1), frequently referred to as van the Vleck (vV)

determinant for multi-dimensional systems is independent of ~. The phase factor exp(iφi)

is non-analytic as ~ → 0 and accounts for the non-uniform approach to the classical limit

via increasingly fast oscillations (see Ref. [69]).

For classically allowed processes, the square modulus of the vV-determinant gives the

classical phase-space density (or probability density) for the phase flow from q1 to q2 within

the time interval t2−t1. Higher order corrections in ~ are neglected in Eq. (1) from the outset.

Using atomic units in the following we will not display the ~ dependence explicitly but,

instead, express the semiclassical limit in terms of the de Broglie wavelength λdB exploiting

the equivalence of vanishing de Broglie wavelength λdB → 0 and the limit ~ → 0.

The point to be emphasized is that the applicability of the saddle-point approximation,

and, in turn, the semiclassical limit for the ionization process in the presence of laser and

Coulomb fields is, a priori, not obvious. The tunneling process is intrinsically non-classical

and the de Broglie wavelength λdB(E) of slow electrons close to the tunneling exit is, in

general, not small compared to the exit coordinate η or the width of the barrier, i.e., the

semiclassical relation λdB ≪ η is violated.
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A. SCA for the first step

The starting point for the first step of strong-field ionization, the tunneling through the

barrier formed by the atomic (ionic) potential and the interaction with the electromagnetic

field, is the quantum transition matrix element in distorted-wave Born approximation (SFA)

MSFA (~p) = −i
∫

∞

−∞

dt 〈ψ~p(t)|VL(t)|ψi (t)〉 , (3)

where |ψi (t)〉 is the bound initial state and |ψ~p(t)〉 is the Volkov state after tunneling,

ψ~p(~r, t) = exp

[

i
(

~p + ~A (t) /c
)

~r − i

2

∫ t

−∞

dt′
(

~p+ ~A(t′)/c
)2
]

. (4)

Eq. (3) is referred to as the strong-field approximation as in the final state the ionic potential

is considered to be negligible in comparison to the interaction VL (t) = ~F (t) · ~r with the

strong electric field ~F (t) = −1
c
d ~A
dt
. The time integral is evaluated within the framework of

the saddle-point approximation assuming that the effective phase (or action)

S(~p, t) =

∫ t

−∞

dt′
{

1

2
[~p+ ~A(t′)/c]2 − εi

}

(5)

is large and rapidly varying with t, thereby invoking the semiclassical (SC) limit. The

prerequisites for the applicability of this semiclassical limit are the ponderomotive energy

Up and the ionization potential Ip = −εi to be large compared to the photon energy ω,

Up/ω ≫ 1 and Ip/ω ≫ 1. Unlike Eq. (1), the semiclassical approximation is applied to the

transition matrix element [Eq. (3)] rather than to the propagator. Accordingly (see, e.g.,

[70, 71]),

MSC
SFA =

∑

j

exp[iS(~p, tjs)]
[

∂2

∂t2
S(~p, tjs)

]1/2
V j
~p (6)

with V j
~p containing the spatial dependencies of the transition matrix element. The saddle

point equation
∂

∂t
S(~p, ts) =

1

2
(~p+ ~A(ts)/c)

2 + Ip = 0 (7)

has complex solutions in t, tjs = tj0+ itjt where the real part t0 is referred to as the ionization

time and the imaginary part tt as the tunneling time. Because of the complex solutions,

the emerging trajectories are often referred to as quantum trajectories, see Refs. [72] and

[70]. When more than one saddle point contributes (j = 1, ...), Eq. (6) can give rise to

semiclassical path interferences.
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Frequently employed approximate evaluations of Eq. (6) include the Perelomov-Popov-

Terent’ev (PPT) or Ammosov-Delone-Krainov (ADK) rate for adiabatic tunneling in which

t0 coincides with the extremum of the electric field F [9–11]:

w (t0, v0,⊥) ∼
∣

∣MSC
SFA

∣

∣

2 ∼ exp

(

− 2κ3

3F (t0)

)

exp

(

−
κv20,⊥
F (t0)

)

. (8)

For simplicity, we omit the preexponential factor in Eq. (8). Although this factor changes

the total ionization rate by several orders of magnitude, for atoms it only slightly affects the

shape of the photoelecton momentum distributions. When applying Eq. (8), a simple and

frequently used choice is that the electron emerges with vanishing velocity component along

the laser polarization direction v0,z = 0 while v0,⊥ is Gaussian distributed. It is common to

apply Eq. (8) as a quasistatic rate [73], i.e., for tunneling ionization for laser phases other

than the field extremum, with F (t0) in Eq. (8) denoting the instantaneous field. Non-zero

longitudinal velocity components v0,z 6= 0 appear near the tunnel exit when the sub-barrier

motion is modeled by the strong-field approximation [74].

The coordinates of the tunneling exit can be conveniently determined by using the fact

that for an electron in a time-independent electric field F and the Coulomb potential, −Z/r,
both the classical Hamilton-Jacobi equation [75] and the stationary Schrödinger equation

are separable in parabolic coordinates (see Refs. [76] and [9])

ξ = r + z, η = r − z, φ = arctan
(y

x

)

. (9)

If the electric field points along the positive z direction, the electron is trapped by an

attractive potential along the ξ coordinate and can tunnel out only in the η direction. The

tunnel exit coordinate η is then obtained from the equation

− β2 (F )

2η
+
m2 − 1

8η2
− Fη

8
= −Ip (F )

4
, (10)

where

β2 (F ) = Z − (1 + |m|)
√

2Ip (F )

2
(11)

is the separation constant (see, e.g., Ref. [77]) and m is the magnetic quantum number of

the initial state. In Eq. (11) we have allowed for the Stark shift of the initial state, i.e., of

the ionization potential:

Ip (F ) = Ip +
1

2
(αN − αI)F

2, (12)
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where F is the instantaneous field amplitude at the ionization time t0 and αN and αI are the

static polarizabilities of an atom and of its ion, respectively [78]. With Eqs. (10) and (8),

the initial conditions for the propagation of trajectories subsequent to tunneling ionization,

i.e., for the second step, are determined.

As the focus of the present work is the improved semiclassical description of the second

step, we treat in the following the output of the first step, in particular the initial velocity (or

momentum) distribution at the tunneling exit [see, e.g., Eq. (8)] as adjustable input. We will

use two different initial phase-space distributions resulting from the tunneling step as initial

conditions for the post-tunneling semiclassical propagation. Both choices of distributions

are described by Eq. (8). The difference is that in one case, the initial parallel velocity v0,z

is set to zero, whereas in the other case, it is set to a nonzero value predicted by the SFA

[74].

B. SCA for the second step

The position and momentum distributions at the tunneling exit serve as initial conditions

for the propagation of classical trajectories in the second step. In the simplest approximation,

the quiver motion for a selected set of trajectories for free electrons in the electromagnetic

field is treated thereby neglecting the atomic force field [14–16, 21]. More advanced descrip-

tions employ full CTMC simulations treating the laser field and the atomic force field on

equal footing by solving Newton’s equation of motion

d2~r(t)

dt2
= −~F (t)− Z~r(t)

r3(t)
(13)

for a large number of initial conditions (typically ≥ 107) thereby sampling the initial phase-

space distribution after tunneling [27].

For the propagation of the electron in the combined fields [Eq. (13)], a semiclassical

approximation in terms of a coherent superposition of amplitudes appears justified, since

classical-quantum correspondence holds separately for both the propagation in the Coulomb

field and in the laser field. For the linear potential of a charged particle in the external field,

VL = ~F ·~r, the Ehrenfest theorem holds for Newton’s law, 〈~∇VL〉 = ~∇VL(〈~r〉). For the long-
range Coulomb potential λdB(E) is negligible compared to the infinite range of the potential

at any energy E. However, an extension of CTMC simulations to the semiclassical domain
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faces considerable difficulties in view of the intrinsic numerical instability which is closely

related to the non-uniform convergence to the classical limit mentioned above. Superposition

of a large number of amplitudes associated with trajectories with rapidly oscillating phases

fails to yield converged scattering amplitudes in the asymptotic limit t→ ∞ [69].

One key ingredient is therefore the binning of the trajectories according to the appro-

priate final canonical momenta and restricting coherent superpositions to those trajectories

within each bin. For bound state excitation driven by ultrashort pulses this corresponds to

binning of the action variable, i.e., to a quantization of classical trajectories. This quantized

classical trajectory Monte-Carlo method [79] can accurately account for quantum revivals

and dephasing in Rydberg manifolds.

For strong-field ionization, the final states lie in the continuum and are binned according

to their momenta in cells in momentum space [44, 60], [pi, pi + ∆pi], with i = x, y, z.

Accordingly, the amplitudes associated with all np trajectories taking off at tj0 with initial

velocity ~vj0 (j = 1, ..., np) reaching the same bin centered at ~p = (px, py, pz) are added

coherently. Thus the ionization probability R (~p) for this final momentum ~p is given by

R (~p) =

∣

∣

∣

∣

∣

np
∑

j=1

√

w
(

tj0, ~v
j
0

)

exp
[

iΦ
(

tj0, ~v
j
0

)]

∣

∣

∣

∣

∣

2

, (14)

where w(tj0, v
j
0) is the probability density of the initial conditions. The sum over j samples the

classical phase flow from ~v0 to the bin ~p corresponding to the vV determinant as determined

by CTMC. Φ(tj0, ~v
j
0) is the phase that each trajectory carries. When the interference phases

of trajectories reaching the same bin are neglected, the classical CTMC probability density

R (~p) =

np
∑

j=1

w
(

tj0, ~v
j
0

)

(15)

emerges. In the QTMC model [56], the phase in Eq. (14) was approximated by

ΦQTMC
(

tj0, ~v
j
0

)

≈ Ipt
j
0 −

∫

∞

tj
0

(

v2(t)

2
− Z

r(t)

)

dt . (16)

We will relate the phase in Eq. (16) to our semiclassical phase in Sec. III A.
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III. FORMULATION OF THE MODEL

A. Semiclassical expression for the phase

The two key ingredients of the present semiclassical two-step model are the choice of an

initial momentum distribution emerging from the first tunneling step based on SFA estimates

and a proper semiclassical description for the second step. This approach accounts for the

expectation that the semiclassical limit is applicable for the evolution of the liberated electron

in the combined laser and ionic force fields. We describe the second step of the two-step

model using the expression for the matrix element of the semiclassical propagator USC. In

addition to its coordinate representation [Eq. (1)] three equivalent forms involving different

combinations of phase-space coordinates exist [65]

〈q2|USC (t2, t1) |p1〉 =
[

−∂
2φ2 (p1, q2) /∂p1∂q2

2πi

]1/2

exp [iφ2 (p1, q2)] , (17a)

〈p2|USC (t2, t1) |q1〉 =
[

−∂
2φ3 (q1, p2) /∂q1∂p2

2πi

]1/2

exp [iφ3 (q1, p2)] , (17b)

〈p2|USC (t2, t1) |p1〉 =
[

−∂
2φ4 (p1, p2) /∂p1∂p2

2πi

]1/2

exp [iφ4 (p1, p2)] . (17c)

They describe the propagation from the initial position (q1) or momentum coordinate (p1)

to a final position (q2) or momentum coordinate (p2) within the time interval t2 − t1. The

phases φi, i = 2, 3, 4 in Eqs. (17a-c) are given by the classical action associated with the

corresponding canonical transformations

φ2 (p1, q2) = φ1 (q1, q2) + p1q1 , (18a)

φ3 (q1, p2) = φ1 (q1, q2)− p2q2 , (18b)

φ4 (p1, p2) = φ1 (q1, q2) + p1q1 − p2q2 , (18c)

with φ1(q1, q2) given by Eq. (2). The generalization of Eqs. (17a-c) and (18a-c) to three

dimensions is straightforward: q1, q2, p1, and p2 should be replaced by the corresponding

vectors ~r1, ~r2, ~p1, and ~p2 [65, 80]. The products p1q1 and p2q2 in Eqs. (18a-c) are to be

replaced by the corresponding scalar products: ~p1 · ~r1 and ~p2 · ~r2.
It is now of interest to inquire which of the propagator matrix elements is appropriate

for the second step of strong-field ionization. Semiclassical scattering characterized by a

transition from momentum ~p1 at t → −∞ to ~p2 at t → ∞ is described by the propagator
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Eq. (17c) with the compensated action φ4 given by [Eq. (18c)]:

φ4 (~p1, ~p2) =

∫ t2

t1

{

−~r (t) · ~̇p (t)−H [~r (t) , ~p (t)]
}

dt . (19)

For strong field ionization representing a half-scattering process of an electron initially

located near the nucleus and emitted with final momentum ~p2(t → ∞), the propagator

Eq. (17b) with action φ3 should be applicable for trajectories launched with initial phase

exp (iIpt0) according to the time evolution of the ground state. This choice is based on

the assumption of well localized starting points in coordinate space ~r1 near the tunnel exit

[Eq. (10)] with negligible phase accumulation under the barrier in position-space represen-

tation. We have

φ3(~r1, ~p2) = φ4(~p1, ~p2)− ~p1 · ~r1 (20)

Note that in the limit of vanishing longitudinal velocity at the tunneling exit (v0,z = 0), ~p1

is orthogonal to ~r1 and, hence, φ3 and φ4 coincide. In the following we include the phase

contribution ~p1 · ~r1 for non-zero v0,z. Its contribution to the interference pattern discussed

below is found, however, to be of numerically minor importance.

In our model we restrict ourselves to exponential accuracy. Thus we ignore the preex-

ponential factor of the matrix element. Using φ3(~r1, ~p2) in Eq. (14) yields the semiclassical

approximation for the probability for strong-field ionization with final momentum ~p,

R(~p) =

∣

∣

∣

∣

∣

np
∑

j=1

√

w
(

tj0, ~v
j
0

)

exp
[

iΦ
(

tj0, ~v
j
0

)]

∣

∣

∣

∣

∣

2

, (21)

with

Φ
(

tj0, ~v
j
0

)

= −~vj0 · ~rt(tj0) + Ipt
j
0 −

∫

∞

tj
0

dt
{

~̇p(t) · ~r(t) +H [~r(t), ~p(t)]
}

= −~vj0 · ~rt(tj0) + Ipt
j
0 −

∫

∞

tj
0

dt

{

v2(t)

2
− 2Z

r(t)

}

. (22)

The generalization of Eq. (22) to an effective potential V (~r) reads

Φ
(

tj0, ~v
j
0

)

= −~vj0 · ~rt(tj0) + Ipt
j
0 −

∫

∞

tj
0

dt

{

v2(t)

2
+ V [~r(t)]− ~r(t) · ~∇V [~r(t)]

}

. (23)

Equation (23) is applicable to effective one-electron descriptions of ionization of multi-

electron systems employing model or pseudopotentials [81]. It should be noted, however,
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that in the presence of a strong short-ranged contribution to V (r) the validity of the un-

derlying semiclassical approximation, λdB ≪ R, where R is the range of the short-ranged

contribution, is not obvious and remains to be verified.

For the Coulomb potential V (~r) = −Z/r, the phase of the QTMC model can be obtained

from Eq. (23) by neglecting the term ~r (t) · ~∇V [~r (t)] in the integrand of Eq. (23). Thus the

SCA phase given by Eq. (22) differs from that of the QTMC model [Eq. (16)]: The Coulomb

interaction enters with doubled weight. The factor 2 originates from properly accounting

for elastic scattering in Eqs. (18b) and (23), i.e., from fully accounting for the Coulomb

potential in the compensated action φ4(~p1, ~p2). Note, that this compensated action accounts

for elastic scattering also in the absence of time-dependent processes. By contrast, Eq. (16)

yields for any time-independent Hamiltonian only a trivial trajectory-independent phase

∼
∫

dt(H + Ip). The QTMC phase can therefore be viewed as an approximation to the full

semiclassical phase Eq. (22).

B. Numerical implementation

In the presence of long-range interactions the calculation of the semiclassical transition

amplitude [Eq. (21)] for strong-field ionization requires special care in view of divergent

phases and the large number of trajectories for a dense sampling of phase space needed for

achieving sufficient resolution for the multi-differential ionization probability.

We subdivide the integration interval [tj0,∞] into two intervals [tj0, τf ] and [τf ,∞] where τf

is the time at which the laser pulse has concluded and beyond which the energy H(τf) = E is

conserved along the outgoing Kepler hyperbola. For pure Coulomb potentials the asymptotic

phase-space coordinates [~p(∞)] can be determined by the analytic Coulomb mapping of the

coordinates [~r(τf ), ~p(τf )] for given energy E,

p2(∞)

2
=
p2(τf)

2
− 1

r(τf)
, (24)

the angular momentum

~L = ~r(τf )× ~p(τf ) (25)

and the Runge-Lenz vector

~a = ~p(τf )× ~L− ~r(τf )/r(τf) . (26)
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The asymptotic momentum follows from (see Ref. [40] that corrects the misprint in [82]):

~p(∞) = p(∞)
p(∞)

(

~L× ~a
)

− ~a

1 + p2(∞)L2
. (27)

The phase Eq. (22) can be analogously decomposed as

Φ
(

tj0, ~v
j
0

)

= −~vj0 · ~rt(tj0) + Ipt
j
0 −

∫ τf

tj
0

dt

{

v2(t)

2
− 2Z

r(t)

}

−
∫

∞

τf

dt

{

E − Z

r(t)

}

. (28)

We furthermore separate the last term in Eq. (28) representing the scattering phase accu-

mulated in the asymptotic interval [τf ,∞] into the parts with time-independent and time-

dependent integrand. The first part yields the linearly divergent contribution

lim
t→∞

E(t− τf ) . (29)

Since only the relative phase between those trajectories arriving in the same bin contribute

to the probability (21) whose final momenta and, therefore, energies coincide, the term

(Ej − Ej′)(t − τf ) vanishes. This allows for the reduction of the integral for the interval

[τf ,∞] to the Coulomb phase

ΦC
f (τf) =

∫

∞

τf

dt

r(t)
(30)

which is still divergent. The regularization of this integral can be performed by analytic

Coulomb mapping for Kepler hyperbolae: the distance from the Coulomb center (i.e., from

the ion) at a given time t reads (see, e.g., Ref. [83])

r (t) = b (g cosh ξ − 1) , (31)

where b = 1/ (2E), g =
√
1 + 2EL2, and the parameter ξ = ξ (t) is determined from

t =
√
b3 (g sinh ξ − ξ) + C. (32)

The constant C in Eq. (32) can be found from the initial conditions for the motion in the

Coulomb field, i.e., from the position ~r(τf ) and momentum ~p(τf) of an electron at t = τf .

With the equations (31) and (32) the integral in Eq. (30) gives

ΦC
f (τf ) =

√
b [ξ (∞)− ξ (τf)] . (33)

Thus for every trajectory we need to calculate ξ (∞) and ξ (τf ). Since ξ → ∞ for t → ∞,

we can discard the decaying exponent in sinh ξ = [exp (ξ) + exp (−ξ)] /2 and neglect both

14



C and ξ compared to exp (ξ) in the asymptotic limit [Eq. (32)]. Consequently, we find for

asymptotically large ξ

t ≈
√
b3g exp(ξ)/2 (34)

from which follows

ξ (t→ ∞) ≈ ln

(

2t

g
√
b3

)

. (35)

Since we are interested in the relative phases of the interfering trajectories within the same

bin and b depends only on the energy E, we can disregard 2t/
√
b3 under the logarithm in

Eq. (35). Note that g depends on both electron energy and angular momentum L. The

latter is different for different interfering trajectories within a given bin of the momentum

space. Thus we set ξ (∞) = − ln (g). For the lower boundary in Eq. (33) we find from

Eq. (31)

ξ (τf) = ± arcosh

{

1

g

[

r (τf )

b
+ 1

]}

, (36)

where the sign still needs to be determined. Taking into account that dr/dt = ~r~v/r and

dr/dt = (dr/dξ) / (dt/dξ) and using Eqs. (31) and (32), we find for ξ (τf )

ξ (τf) = arsinh

{

~r(τf ) · ~p(τf)
g
√
b

}

. (37)

Thus the finite interference contribution from the Coulomb phase becomes

ΦC
f (τf ) = −

√
b

[

ln g + arsinh

{

~r(τf ) · ~p(τf)
g
√
b

}]

. (38)

We note that such asymptotic Coulomb phase contributions are missing in the QTMC model

[56].

In order to achieve convergent semiclassical amplitudes based on Monte-Carlo sampling

of a large number of classical trajectories, efficient sampling of initial conditions is essential.

One standard method employs initial sets of t0 and ~v0 that are either uniformly randomly

distributed or distributed on a grid (e.g., in Ref. [56]). This results in sampling of a large

number of trajectories with relatively small weights [see, e.g., Eq. (8)], which contribute to

the final momentum distribution only to a small extent. Here, we implement an alternative

Monte-Carlo algorithm based on importance sampling. We account for the importance of a

given trajectory already at the sampling stage, i.e., before the integration of the equations of

motion (13). Importance sampling is particularly significant in the presence of interference

because typically many more trajectories are needed to resolve fine interference structures
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compared to CTMC simulations without interference (see Sec. IV). Calculation of the ion-

ization probability with trajectories selected by importance sampling is given [instead of

Eq. (21)] by

R (~p) =

∣

∣

∣

∣

∣

np
∑

j=1

exp
[

iΦ
(

tj0, ~v
j
0

)]

∣

∣

∣

∣

∣

2

(39)

with ionization times tj0 and initial velocities ~vj0 distributed according to the square root

of the tunneling probability,
√

w(t0, ~v0) [Eq. (8)]. Depending on the laser parameters and

tunneling probabilities this importance sampling algorithm can significantly increase the

computational speed and convergence as a function of the number of simulated trajectories.

IV. RESULTS AND DISCUSSION

In our simulations we use a few-cycle linearly polarized laser pulse defined in terms of a

vector potential that is present between t = 0 and t = τf ,

~A (t) = (−1)n+1 cF0

ω
sin2

(

ωt

2n

)

sin (ωt)~ez. (40)

Here ~ez is the unit vector pointing in polarization direction and n is the number of optical

cycles of the field with τf = 2πn/ω. The electric field is obtained from Eq. (40) by ~F (t) =

−1
c
d ~A
dt
. We solve Newton’s equations of motion using a fourth-order Runge-Kutta method

with adaptive step size [84] and calculate the phase [Eq.(22)] by adding an extra equation

to the system of equations of motion.

Here we consider linearly polarized fields only. Because of the rotational symmetry with

respect to the polarization direction of the laser pulse the semiclassical simulations for a

linearly polarized field can be performed employing only two degrees of freedom (z, r⊥). This

reduces the numerical complexity of the problem significantly. Indeed, in order to achieve

convergence of the interference oscillations, we need about 109 trajectories (for a comparison,

1.5×106 trajectories were sufficient in the CTMC simulation to calculate electron momentum

distributions without interference [85]). Nearly the same number of trajectories is used in

CCSFA calculations (see, e.g., Ref. [31]). Thus about 100 times more trajectories are needed

for the semiclassical simulations when interference is included. Simulations of interactions

with elliptically or circularly polarized laser fields will require an even larger number of

trajectories.
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At the intensity of 9 × 1013 W/cm2 the size of the bin on the (pz, p⊥) plane was chosen

to be 2.5 × 10−3 a.u., 1.25 × 10−3 a.u., and 6.25 × 10−4 a.u. at the wavelengths of 800

nm, 1200 nm, and 1600 nm, respectively. With the number of trajectories mentioned above

(∼ 109) this ensures the convergence of the photoelectron energy spectrum up to 10−5 of its

maximum value.

We benchmark our present SCTS model against the exact numerical solution of the

time-dependent Schrödinger equation (TDSE) and also compare with results of the previous

QTMC model.

In order to numerically solve the TDSE

i
∂|ψ(t)〉
∂t

=

{

−∆

2
+ V (r) + zF (t)

}

|ψ(t)〉 (41)

in the dipole approximation for a single active electron, we employ the generalized pseudo-

spectral method [86–88]. This method combines the discretization of the radial coordinate

optimized for the Coulomb singularity with quadrature methods to allow stable long-time

evolution using a split-operator representation of the time-evolution operator. Both the

bound as well as the unbound parts of the wave function |ψ(t)〉 can be accurately represented.

The atomic potential V (r) is taken to be the Coulomb potential, V (r) = −1/r. Propagation

of the wave function is started from the ground state of hydrogen. Due to the cylindrical

symmetry of the system the magnetic quantum number m = 0 is conserved. After the

end of the laser pulse the wave function is projected on eigenstates |p, ℓ〉 of the free atomic

Hamiltonian with positive eigenenergy E = p2/2 and orbital quantum number ℓ to determine

the transition probabilities R(~p) to reach the final state |φ~p〉 (see Refs. [89–91]):

R(~p) =
1

4πp

∣

∣

∣

∣

∣

∑

l

eiδℓ(p)
√
2l + 1Pℓ(cos θ) 〈p, ℓ |ψ(tf )〉

∣

∣

∣

∣

∣

2

. (42)

In Eq. (42), δℓ(p) is the momentum-dependent atomic phase shift, θ is the angle between

the electron momentum ~p and the polarization direction of the laser field ~ez and Pℓ is the

Legendre polynomial of degree ℓ. In order to avoid unphysical reflections of the wave function

at the boundary of the system, the length of the computing box was chosen to be 1200 a.u.

(∼ 65 nm) which is much larger than the maximum quiver amplitude α = F0/ω
2 = 62 a.u.

at the intensity of 0.9×1014 W/cm2 and the wavelength of 1600 nm. The maximum angular

momentum included was ℓmax = 300.
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We first turn our attention to the vectorial photoelectron momentum distribution in the

(pz, p⊥) plane (Fig. 1). For these semiclassical simulations we employ the initial distribution

p
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p ⊥
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)
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FIG. 1. (Color online) Vectorial momentum distributions for the H atom ionized by a laser pulse

with a duration of n = 8 cycles, wavelength of λ = 800 nm, and peak intensity of I = 0.9 × 1014

W/cm2 obtained from (a) the QTMC model, (b) solution of the TDSE, and (c) the present SCTS

model. The distributions are normalized to the total ionization yield. A logarithmic color scale

is used. The laser field is linearly polarized along the z-axis. A logarithmic color scale is used

spanning 5 orders of magnitude from the highest intensity (dark red) to lowest intensity (blue).

[Eq. (8)] with zero initial parallel velocity. Overall, as noted previously, the momentum

distributions of the SCTS and QTMC models, both of which calculated from the same initial

distributions, qualitatively resemble the TDSE results quite well. However, a close-up of the

low-energy spectrum (Fig. 2) shows marked deviations. For |p| ≤ 0.3 a.u. and energies well

below Up = 0.2 a.u., the vectorial momentum distribution displays a fan-like interference

structure similar to that of Ramsauer-Townsend difraction oscillations [52, 53, 92, 93]. The

number of radial nodal lines is controlled by the dominant partial-wave angular momentum

ℓc in Eq. (42), i.e., R(~p) ∼ |Plc(cosθ)|2 (see Refs. [92, 93]). While the SCTS model closely

matches the nodal pattern of the TDSE, the QTMC model yields fewer nodal lines, which is a

direct consequence of the underestimate of the Coulomb interaction in the QTMC treatment

of the interference phase. This effect of neglecting the elastic scattering in the Coulomb field

occurs both during the laser pulse [Eq. (28)] and after [Eq. (38)]. The magnitude of the

latter is illustrated in Fig. 3 where we display the effect of ΦC
f (τf ) for both an ultrashort

single-cycle pulse and the longer eight-cycle pulse. The post-pulse Coulomb phase is more
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FIG. 2. (Color online) Magnification of Fig. 1 for |pz|, |p⊥| < 0.3 a.u.

pronounced for shorter τf as the electron is still closer to the nucleus at the end of the pulse.

For a quantitative comparison of different methods we consider the singly-differential

angular distribution (Fig. 4)

dR

sin θdθ
= 2π

∫

∞

0

dE
√
2ER[~p(E)] (43)

and the photoelectron spectrum

dR

dE
= 2π

√
2E

∫ π

0

dθ sin θ R[~p(θ)] . (44)

The energy spectra feature pronounced ATI peaks. These are qualitatively reproduced

by the semiclassical methods. However, only for the low-order peaks the semiclassical ap-

proximation can quantitatively reproduce the amplitude of the oscillations [54, 55]. This is

closely related to the fact that the initial conditions from the tunneling step [Eq. (8)] pro-

vide too few trajectories with large longitudinal momenta that could account for intercycle

interferences, the semiclassical origin of the ATI modulation at large momenta. For the

same reason the photoelectron spectrum dR/dE falls off too rapidly for energies exceeding

∼ Up. The semiclassical angular distributions reproduce the Ramsauer-Townsend diffrac-

tion oscillations [92, 93]. The modulation amplitude as well as the position of the minima

of the SCTS agree better with the TDSE compared to the QTMC model because of the

improved interference phase. The difference is more pronounced for the angular distribution

of low-energy electrons (Fig. 5).
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FIG. 3. (Color online) Vectorial momentum distribution from the present SCTS model for low-

energy electrons without (panels a, c) and with (b, d) inclusion of the post-pulse Coulomb phase

ΦC
f (τf ) [Eq. (38)] for the eight-cycle pulse of Fig. 1 (a, b) and a single-cycle pulse (c, d) with all

other laser parameters identical. The distributions are normalized to the total ionization yield.

A logarithmic color scale is used spanning 5 orders of magnitude from the highest intensity (dark

red) to lowest intensity (blue).

Obviously, further improvement of the semiclassical description of the energy and angular

distributions of photoelectrons require an amended initial distribution emerging from the

tunneling step. In order to improve the initial conditions for the propagation of classical

trajectories, we set the initial parallel velocity v0,z at every ionization time t0 in Eq. (8) to

a nonzero value predicted by the strong-field approximation (see Refs. [31, 61, 62, 74]). For

the pulse defined in Eq. (40) it can be approximated as

vz,0 (t0) = −1

c
Az (t0)

[

√

1 + γ2 (t0, v0,⊥)− 1

]

, (45)
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FIG. 4. (Color online) Energy spectra [panels (a), (c), and (e)] and angular distributions [panels

(b), (d), and (f)] of the photoelectrons for ionization of H at an intensity of 9× 1013 W/cm2 and

a pulse duration of 8 cycles obtained from the QTMC model [thin (magenta) curve with solid

circles], the SCTS model [solid (blue) curve], and TDSE [thick (green) curve]. The distributions

[(a),(b)], [(c),(d)], and [(e),(f)] correspond to the wavelengths of 800, 1200, and 1600 nm, with

Keldysh parameters of 1.12, 0.75, and 0.56, respectively. The energy spectra are normalized to

the peak value, the angular distributions are normalized to the total ionization yield and show

the spectrum for electrons with asymptotic energies E < Up. The energy equal to Up is shown by

arrows in panels (a) and (c).

where

γ (t0, v0,⊥) =
ω
√

2Ip + v20,⊥

F0 sin
2
(

ωt0
2np

)

|cos (ωt0)|
(46)

is the effective Keldysh parameter [74]. In the tunneling limit γ (t0, v0,⊥) → 0 the longitudinal
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FIG. 5. (Color online) Angular distributions for low-energy electrons (innermost fan-like structure,

c.f. Fig. 2): (a) E < 0.022 a.u. for λ=800 nm, (b) E < 0.031 a.u. for λ=1200 nm, and (c) E < 0.036

a.u. for λ = 1600 nm. Cut-off energies have been determined from TDSE results.

initial velocity vz,0(t0) vanishes.

Employing Eq. (45) as initial condition for CTMC trajectories taking off at t0 at the

tunneling exit yields improved agreement between the SCTS model and the TDSE for both

the vectorial momentum distribution (Fig. 6) and the singly differential distributions dR/dE

and dR/ (sin θdθ) (Fig. 7). Indeed, the SCTS model can now better reproduce the energy

spectrum obtained from the TDSE, see Fig. 7(a). For angular distribution the agreement

between the QTMC and the TDSE worsens whereas the agreement between the SCTS and

the TDSE improves [compare Fig. 7(b) with Fig. 4(b)]. These results clearly suggest that the

main source of deviations of the SCTS model from the TDSE are the errors in treating the

tunneling step rather than the semiclassical description of the post-tunneling propagation.
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FIG. 6. (Color online) Same as Fig. 1 but with nonzero initial parallel velocity.
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FIG. 7. (Color online) Same as Fig. 4 for λ = 800 nm with nonzero initial parallel velocity.

V. CONCLUSIONS AND OUTLOOK

We have developed a semiclassical two-step model for strong-field ionization that describes

quantum interference and accounts for the Coulomb potential beyond the semiclassical per-

turbation theory. In the SCTS model the phase associated with every classical trajectory

is calculated using the semiclassical expression for the matrix element of the quantum me-

chanical propagator. For identical initial conditions after the tunneling ionization step taken

from standard tunnel ionization rates [1], the SCTS model yields closer agreement with the

exact solution of the Schrödinger equation than the previously proposed QTMC model. Fur-

thermore, after improving the input from the tunneling ionization step by including nonzero
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parallel velocities in the initial conditions for the motion after tunneling, the SCTS model

yields significantly improved agreement in the angular distribution, i.e., the position of in-

terference fringes with the TDSE results. Remaining differences in the intensity of energy

distributions are traced back to improvable starting conditions (in particular the choice of

parallel velocities) of classical trajectories.

The present SCTS model can be extended to multielectron targets in a straightforward

fashion by the inclusion of dynamical Stark shifts and polarization-induced dipole poten-

tials. Semiclassical models of this type will allow to investigate the role of the multielectron

polarization effect in the formation of the interference structure in the electron momentum

distributions. Since the multielectron potential affects both the exit point and the electron

dynamics in the continuum, pronounced imprints of the polarization effects in the interfer-

ence patterns are expected. Finally, the two-step semiclassical models accounting for both

the interference and multielectron effects can provide a valuable tool for investigation of the

delays in photoemission, which is presently one of the most intensively studied problems in

strong-field physics and attosecond science.
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[27] K. Dimitriou, D. G. Arbó, S. Yoshida, E. Persson, and J. Burgdörfer, Origin of the double-

peak structure in the momentum distribution of ionization of hydrogen atoms driven by strong

laser fields, Phys. Rev. A 70, 061401(R) (2004).

[28] C. I. Blaga, F. Catoire, P. Colosimo, G. G. Paulus, H. G. Muller, P. Agostini and L. F. Di-

Mauro, Strong-field photoionization revisited, Nat. Phys. 5, 335 (2009).

[29] W. Quan, Z. Lin, M. Wu, H. Kang, H. Liu, X. Liu, J. Chen, J. Liu, X. T. He, S. G. Chen et

al., classical aspects in above-threshold ionization with a midinfrared strong laser field, Phys.

Rev. Lett. 103, 093001 (2009).

[30] C. Liu and K. Z. Hatsagortsyan, Origin of unexpected low energy structure in photoelectron

spectra induced by midinfrared strong laser fields, Phys. Rev. Lett. 105, 113003 (2010).

26



[31] Tian-Min Yan, S. V. Popruzhenko, M. J. J. Vrakking, and D. Bauer, Low-energy structures

in strong field ionization revealed by quantum orbits, Phys. Rev. Lett. 105, 253002 (2010).
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[52] D. G Arbó, E. Persson, and J. Burgdörfer, Time double-slit interferences in strong-field tun-

neling ionization, Phys. Rev. A 74, 063407 (2006).

[53] R. Gopal, K. Simeonidis, R. Moshammer, Th. Ergler, M. Dürr, M. Kurka, K.-U. Kühnel,

S. Tschuch, C.-D. Schröter, D. Bauer, and J. Ullrich, Three-dimensional momentum imaging

of electron wave packet interference in few-cycle laser pulses, Phys. Rev. Lett. 103, 053001

(2009).

28
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[70] D. B. Milošević, G. G. Paulus, D. Bauer, and W. Becker, Above-threshold ionization by

few-cycle pulses, J. Phys. B 39, R203 (2006).

[71] T. Yan and D. Bauer, Sub-barrier Coulomb effects on the interference pattern in tunneling-

ionization photoelectron spectra, Phys. Rev. A 86, 053403 (2012).
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