399 research outputs found

    Phase-Controlled Force and Magnetization Oscillations in Superconducting Ballistic Nanowires

    Full text link
    The emergence of superconductivity-induced phase-controlled forces in the (0.01-0.1) nN range, and of magnetization oscillations, in nanowire junctions, is discussed. A giant magnetic response to applied weak magnetic fields, is predicted in the ballistic Josephson junction formed by a superconducting tip and a surface, bridged by a normal metal nanowire where Andreev states form.Comment: 5 pages, 3 figure

    Origin of the short-range, strong repulsive force between ionic surfactant layers

    Get PDF
    We study the electrostatic interaction between two ionic surfactant layers by performing molecular dynamic simulations of salt-free thin water films coated by surfactants (Newton black films). We find a strong exponentially decaying short-range repulsion not explained by classical Poisson-Boltzmann theory. This electrostatic force is shown to be mainly due to the anomalous dielectric response of water near charged surfactant layers. This result clarifies the much debated physical mechanism underlying the controversial "hydration forces" observed in experiments. In the case of ionic thin films, the "hydration forces" can be identified with the electrostatic forces induced by the layers of highly polarized water originated at the interfaces

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Real-time intermembrane force measurements and imaging of lipid domain morphology during hemifusion

    Get PDF
    Membrane fusion is the core process in membrane trafficking and is essential for cellular transport of proteins and other biomacromolecules. During protein-mediated membrane fusion, membrane proteins are often excluded from the membrane-membrane contact, indicating that local structural transformations in lipid domains play a major role. However, the rearrangements of lipid domains during fusion have not been thoroughly examined. Here using a newly developed Fluorescence Surface Forces Apparatus (FL-SFA), migration of liquid-disordered clusters and depletion of liquid-ordered domains at the membrane-membrane contact are imaged in real time during hemifusion of model lipid membranes, together with simultaneous force-distance and lipid membrane thickness measurements. The load and contact time-dependent hemifusion results show that the domain rearrangements decrease the energy barrier to fusion, illustrating the significance of dynamic domain transformations in membrane fusion processes. Importantly, the FL-SFA can unambiguously correlate interaction forces and in situ imaging in many dynamic interfacial systems.open0

    Coupling Optical and Electrical Measurements in Artificial Membranes: Lateral Diffusion of Lipids and Channel Forming Peptides in Planar Bilayers

    Get PDF
    Planar lipid bilayers (PLB) were prepared by the Montal-Mueller technique in a FRAP system designed to simultaneously measure conductivity across, and lateral diffusion of, the bilayer. In the first stage of the project the FRAP system was used to characterise the lateral dynamics of bilayer lipids with regards to phospholipid composition (headgroup, chain unsaturation etc.), presence of cholesterol and the effect of divalent cations on negatively-charged bilayers. In the second stage of the project, lateral diffusion of two fluorescently-labelled voltage-dependent pore-forming peptides (alamethicin and S4s from Shaker K(+) channel) was determined at rest and in the conducting state. This study demonstrates the feasibility of such experiments with PLBs, amenable to physical constraints, and thus offers new opportunities for systematic studies of structure-function relationships in membrane-associating molecules

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Glycan Structures Contain Information for the Spatial Arrangement of Glycoproteins in the Plasma Membrane

    Get PDF
    Glycoconjugates at the cell surface are crucial for cells to communicate with each other and the extracellular microenvironment. While it is generally accepted that glycans are vectorial biopolymers, their information content is unclear. This report provides evidence that distinct N-glycan structures influence the spatial arrangement of two integral membrane glycoproteins, Kv3.1 and E-cadherin, at the adherent membrane which in turn alter cellular properties. Distinct N-glycan structures were generated by heterologous expression of these glycoproteins in parental and glycosylation mutant Chinese hamster ovary cell lines. Unlike the N-linked glycans, the O-linked glycans of the mutant cell lines are similar to those of the parental cell line. Western and lectin blots of total membranes and GFP immunopurified samples, combined with glycosidase digestion reactions, were employed to verify the glycoproteins had predominantly complex, oligomannose, and bisecting type N-glycans from Pro(-)5, Lec1, and Lec10B cell lines, respectively. Based on total internal reflection fluorescence and differential interference contrast microscopy techniques, and cellular assays of live parental and glycosylation mutant CHO cells, we propose that glycoproteins with complex, oligomannose or bisecting type N-glycans relay information for localization of glycoproteins to various regions of the plasma membrane in both a glycan-specific and protein-specific manner, and furthermore cell-cell interactions are required for deciphering much of this information. These distinct spatial arrangements also impact cell adhesion and migration. Our findings provide direct evidence that N-glycan structures of glycoproteins contribute significantly to the information content of cells
    corecore