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Abstract

Glycoconjugates at the cell surface are crucial for cells to communicate with each other and the extracellular
microenvironment. While it is generally accepted that glycans are vectorial biopolymers, their information content is
unclear. This report provides evidence that distinct N-glycan structures influence the spatial arrangement of two integral
membrane glycoproteins, Kv3.1 and E-cadherin, at the adherent membrane which in turn alter cellular properties. Distinct
N-glycan structures were generated by heterologous expression of these glycoproteins in parental and glycosylation
mutant Chinese hamster ovary cell lines. Unlike the N-linked glycans, the O-linked glycans of the mutant cell lines are similar
to those of the parental cell line. Western and lectin blots of total membranes and GFP immunopurified samples, combined
with glycosidase digestion reactions, were employed to verify the glycoproteins had predominantly complex,
oligomannose, and bisecting type N-glycans from Pro-5, Lec1, and Lec10B cell lines, respectively. Based on total internal
reflection fluorescence and differential interference contrast microscopy techniques, and cellular assays of live parental and
glycosylation mutant CHO cells, we propose that glycoproteins with complex, oligomannose or bisecting type N-glycans
relay information for localization of glycoproteins to various regions of the plasma membrane in both a glycan-specific and
protein-specific manner, and furthermore cell-cell interactions are required for deciphering much of this information. These
distinct spatial arrangements also impact cell adhesion and migration. Our findings provide direct evidence that N-glycan
structures of glycoproteins contribute significantly to the information content of cells.
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Introduction

Glycans, like proteins and nucleic acids, are vectorial biomol-

ecules. Unlike proteins and nucleic acids, the information content

of polysaccharides encoded by the sequence of monosaccharides is

unclear. N-Glycosylation of newly synthesized membrane proteins

is in fact the most ubiquitous protein co-translational modification

in the lumen of the endoplasmic reticulum [1]. An important

physiochemical property conferred by membrane proteins is their

lateral heterogeneity in biological membranes. Since the majority

of membrane proteins are N-glycosylated, it is of considerable

interest whether the glycans of N-glycosylated membrane proteins

contain information about their association, clustering, and

distribution in the cell membrane. Up to date, the information

of the N-glycans of glycoproteins has been shown to affect

important physiochemical properties such as conformation,

stability, protease resistance, charge, and water binding capacity

[2]. Congenital disorders of glycosylation (CDG) in humans [3]

and mutant glycosylation mice [4,5,6] emphasize the importance

of the N-glycosylation process in the context of a multicellular

organism. Clearly, establishing the cellular information content of

N-glycans would tremendously assist in understanding their role in

the development and maintenance of an organism.

E-Cadherin and Kv3.1 are transmembrane glycoproteins which

have critical biological roles. E-Cadherin is the primary adhesion

molecule involved in calcium-dependent cell-cell interactions [7].

It has four utilized N-glycosylation sites and removal of these sites

generates very unstable protein [8]. Further, abrogation of the two

sites closest to the N-terminus of E-cadherin altered calcium-

dependent cell-cell adhesion, while vacancy of the site closest to

the C-terminus had an immense influence on protein stability.

Kv3.1 is a voltage-gated K+ channel which has two absolutely

conserved N-glycosylation sites [9]. Vacancy of these N-glycosyl-

ation sites produced functional Kv3.1 channels at the cell surface

[10]. However, ion conductance and neuronal-derived cell

migration were altered [11]. As such, it is of considerable interest

to determine the information content of the glycans associated

with the E-cadherin and Kv3.1 glycoproteins.

In an initial and simplified approach to explore the role of N-

linked glycan structures on membrane glycoprotein distribution,

and subsequent effects on cell-cell contacts, we examined the

spatial arrangement in the adherent plasma membrane of two

integral membrane glycoproteins, Kv3.1 and E-cadherin, and

subsequently explored their roles in cell adhesion and migration.

N-Glycosylated proteins contain three types of N-glycans:

oligomannose, hybrid, and complex [12]. Further the core

mannose of hybrid and complex N-glycans can be modified by

the addition of a bisecting N-acetylglucosmine (GlcNAc) which is

referred to as bisecting type N-glycans. We generated different

forms of both glycoproteins by heterologous expression of each of

the proteins in parental (Pro-5) and glycosylation mutant (Lec1 and
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LEC10B) Chinese hamster ovary (CHO) cell lines. The Pro-5 cell

line produces the majority of N-glycosylated proteins with complex

N-glycans while the major glycoproteins produced by the Lec1 and

LEC10B CHO cell lines are those with oligomannose N-glycans

and bisecting type N-glycans, respectively [13,14]. The O-glycans

of the mutant cell lines are similar to those of the Pro-5 cell line.

We observed that the distribution of Kv3.1 and E-cadherin in the

adherent plasma membrane of two or more cells was altered by

changing the structure of N-glycans associated with either of the

glycoproteins in both a glycan-dependent and protein-dependent

manner. For single cells, these differences revealed less depen-

dence on the protein and on the N-glycan attached to the

glycoprotein while the glycoconjugates were more influential.

Increases in the concentration of the Kv3.1 and E-cadherin

glycoproteins at the cell-cell contact correlated with enhanced

cellular migratory rates and cell adhesiveness, respectively. Taken

together, the interpretation of the information encoded by the type

of N-glycan was drastically different between the various forms of

the Kv3.1 and E-cadherin glycoproteins when cell-cell interactions

existed while the differences were quite subtle for these glycopro-

teins in the absence of cell-cell interactions.

Materials and Methods

Recombinant vectors
To construct Kv3.1-pEGFP-N3 and N220Q/N229Q-pEGFP-

N3 recombinant vectors, Polymerase Chain Reaction was

employed to remove stop site and add BamHI sites on 59 and 39

ends. Kv3.1-pCDNA 3.1 and N220Q/N229Q- pCDNA 3.1

recombinant vectors were used as templates [15]. E-cadherin-GFP

expression vector (GenBank Accession # L08599) was purchased

(Addgene, Cambridge, MA, USA).

Cell culture and transfections
Parental Pro-5 and glycosylation mutant Pro-Lec1 (Lec1) CHO

cells were obtained from American Type Culture Collection

(Manassas, VA, USA). Glycosylation mutant cell line Pro-LEC10B

(LEC10B) were gifted by Dr. Pamela Stanley, Albert Einstein

College of Medicine, New York [13]. Cells were maintained in

MEM Alpha Media (Hyclone, Logan, UT, USA) supplemented

with 10% fetal bovine serum, 50 U/mL penicillin and 50 mg/mL

streptomycin (Gemini BioProducts, West Sacramento, CA, USA)

at 37uC under 5% CO2. For the production of stable cell lines,

CHO cells of 60–70% confluency were transfected with neomycin

selectable expression plasmids encoding wild type Kv3.1, N220Q/

N229Q Kv3.1, and E-cadherin as previously described [11].

Total membrane isolation
CHO cells (<1.35 X 108) were homogenized in lysis buffer

(10 mM Tris, pH 7.4; 250 mM sucrose, 5 mM EDTA; protease

inhibitor cocktail set III (Calbiochem, San Diego, CA, USA)

1:500), and centrifuged at 2,0006 g for 10 min. Supernatant was

centrifuged at 100,0006 g for 1 h. Pellet was resuspended in lysis

buffer and protein concentration was determined by Lowry assay.

Samples were stored at 280uC.

Glycosidase digestions of total membranes
Glycosidase digestions of total CHO membranes were con-

ducted. Total membranes (5 g/L) were treated with 20 U/mL

PNGase F, 50 U/mL Endo H and 0.83 U/mL neuraminidase in

appropriate buffers (New England Biolabs, Ipswich, MA, USA).

Reactions were left overnight at 37uC and stopped by adding

reducing SDS-PAGE sample buffer.

Immunoprecipitation of GFP fusion proteins
Transfected CHO cells (3–76107 cells) were sonicated in lysis

buffer (50 mM sodium phosphate, pH 7.4, 0.3 M potassium

chloride, 0.5% triton X-100; protease inhibitor 1:500), and

centrifuged at 1,0006 g for 15 min. Gel slurry of anti-GFP

conjugated to agarose (Medical & Biological Laboratories,

Nagoya, Japan) was added to low speed spin supernatant and

rotated at room temperature for 1 h. Resin was washed twice with

50 mM sodium phosphate, pH 7.4, 0.3 M potassium chloride,

and PBS by spinning at 6606 g for 5 minutes. Reducing SDS

sample buffer was added to equal amounts of gel slurry containing

GFP fusion proteins. Samples were incubated overnight at room

temperature, and immediately used for lectin blotting or stored at

220uC.

Western blot analysis
Kv3.1 and E-cadherin total membrane samples were electro-

phoresed for 1.7 h and 3.5 h at 20 mAmps on 10% and 12% SDS

gels, respectively. Electrophoresed proteins were transferred to

PVDF membranes (Millipore, Billercia, MA, USA) for 3 h at

100 V or 4 h at 250 mAmps, respectively. For GFP immunopur-

ifed samples, proteins were electrophoresed for 1.7 h at

20 mAmps on 10% gels and proteins were transferred for 3 h at

250 mAmps. Incubations and development of blots, as well as

monoclonal mouse anti-Kv3.1 (Neuromab, Davis, CA, USA),

were as described [16]. Rabbit pan Cadherin antibody (Novus

Biologicals, Littleton, CO, USA) was utilized to detect E-cadherin.

Western Blots were performed at least three times for each

transfected cell line, except for the LEC10B N220Q/N229Q,

which was tested two times. All results were consistent.

Lectin blotting
Total membranes (25 mg) or immunopurified GFP-Kv3.1 and

GFP-cadherin samples were electrophoresed for 1.7 h at

20 mAmps on 10% SDS gels and separated proteins were

transferred to membranes for 3 h at 250 mA. Blots were incubated

in blocking buffer (PBS, 5% non-fat dry milk (Bio-Rad) with

0.05% Tween 20) followed by incubation with biotinylated L-

PHA, E-PHA, or GNL (Vector Labs, Burlingame, CA, USA).

Blots were washed four times with PBS plus 0.05% Tween 20.

Membranes were incubated with strepavidin conjugated to

alkaline phosphatase for 1 h at room temperature. Blots were

washed four times with PBS plus 0.05% Tween 20, and twice with

PBS, and developed with ImmunO alkaline phosphatase substrate

(MP Biomedicals, Irvine, CA, USA). Membranes containing

electrophoresed total membrane proteins were stained with

coomassie blue. Lectin blots of total membranes were tested a

minimum of two times while lectin blots of GFP immunopurified

samples were tested a minimum of three times. In all cases, the

results were reproducible.

TIRF microscopy
Stable transfected cells were isolated using a FACS Vantage

(Becton Dickinson, Franklin Lakes, NJ, USA) cell sorter with laser

excitation at 488 nm and green fluorescence emission at 515–

545 nm and seeded onto 35 mm poly-L-lysine coated glass bottom

dishes (MatTek, Ashland, MA, USA) for about 26 h. Live cells

were excited with an argon laser beam of wavelength 488 nm

entering the side illumination port of an Olympus IX-71

microscope (Olympus, Center Valley, PA, USA) through a Apo

60X 1.45 objective and images captured with an ORCA R2 deep

cooled mono CCD camera. Detection settings were kept constant.

Exposure time of 1000 ms was utilized for data analysis. The
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shutters, filters, camera, and data acquisition were controlled by

Cell̂TIRF Control 1.1 and Metamorph for Olympus Basic

software. Image J software was utilized to measure the fluores-

cence intensity signal for the relative amount of protein in the

membrane patch, including that at the cell-cell border, and it was

also used to measure the number and size of particles in the

various regions of the membrane patch. The number of particles

(size 5–10,000 pixels) in the total adherent patch, the exterior

border of the membrane patch, and the interior plasma

membrane, excluding the cell-cell interface, was determined. For

the percentage of particles in the interior or exterior plasma

membrane, the number of particles in each of the respective areas

of the plasma membrane was divided by the particles in the total

adherent patch.

Wound healing assays
Cell migration experiments were conducted as described [11].

Cells were seeded in equal concentrations. Upon cell confluency,

media was removed and wounds were made in the monolayer

using a beveled 200 ml pipet tip. Cells were rinsed twice with

media. Images were obtained at 0 and 16 h on an Olympus IX 50

microscope using a 10X objective. The percent of closure increase

due to the N-glycan attached to Kv3.1 was determined by taking

the difference in wound closure between glycosylated (Wgly) and

unglycosylated (Wungly), and dividing the difference by the closure

of unglycosylated (Wungly) using the following equation:

Wgly{Wungly

� �
=Wungly � 100.

Dissociation assays
Dissociation assays [17] were modified. Cells were seeded in

equal amounts on 35 mm dishes. Upon cell confluency, cells were

washed twice. Cells were removed by one complete rotation with a

cell scraper. Cells were dissociated by pipetting seven times.

Images (25 fields/dish) were obtained on an Olympus IX 50

microscope using a 10X objective. Particles, cell aggregates with

more than five cells, were counted and particle size measured.

Data are presented as the difference between the area of

Cadherin-CHO particles (ACad) and nontransfected CHO parti-

cles (Anon), and then dividing the difference by the area of

nontransfected CHO particles, as indicated in the equation:

ACad{Anonð Þ=Anon � 100.

Data analysis
Image J software was used for mean fluorescence intensity,

particle size and number. Adobe Photoshop was utilized for

wound size measurements. Origin 7.5 was used for graphics and

statistics. Data is presented as the mean 6 S.E. where n denotes

the number of cell areas measured. The unpaired student’s t-test

was utilized when comparing populations and a value of p,0.05

was considered significant, unless otherwise indicated. All micros-

copy experiments were performed on at least three different days.

Results

Type of glycans attached to Kv3.1 and E-cadherin in
various CHO cells

Two and four N-glycans are attached to wild type Kv3.1 [18]

and E-cadherin [8] glycoproteins, respectively. Removal of both

N-glycosylation sites of the Kv3.1 protein generates functional

unglycosylated N220Q/N229Q Kv3.1 protein [11,18] while

abolishment of all four sites of E-cadherin produces virtually no

protein at the cell surface [8]. As such, the aglycoform of E-

cadherin generated by site directed mutagenesis could not be

evaluated. To examine whether N-glycan occupancy and structure

impacts spatial arrangements of Kv3.1 and E-cadherin in the

plasma membrane, wild type Kv3.1, N220Q/N229Q Kv3.1, and

E-cadherin proteins tagged with EGFP were heterologously

expressed in a parental CHO cell line (Pro-5) and two N-

glycosylation mutant CHO cell lines (Lec1 and LEC10B). Lec1

and LEC10B cells generate glycoproteins with oligomannose N-

glycans and bisecting type N-glycans, respectively, while Pro-5 cells

produce predominantly complex N-glycans (Figure 1A) [13,14].

We isolated total membranes from the various CHO cells

expressing wild type Kv3.1, N220Q/N229Q Kv3.1, and E-

cadherin proteins. These membranes were treated without (2) and

with (+) PNGase F (removes complex, hybrid and oligomannose

N-glycans), neuraminidase (neu, cleaves sialyl residues from non-

reducing termini of carbohydrate chains) or Endo H (removes

oligomannose), and then were analyzed by Western blots

(Figure 1). The immunoband of wild type Kv3.1 isolated from

Pro-5 cells (Figure 1B; <153 kDa) migrated much slower than that

from Lec1 cells (Figure 1C; <111 kDa) and slower than that from

LEC10B cells (Figure 1D; <142 kDa). In some cases, a small

percent of the Kv3.1 glycoprotein from Pro-5 cells migrated to a

similar position as that expressed in Lec1 cells, and this

immunoband migrated slightly faster upon treatment with Endo

H (Figure 1B). This result indicates that some of the glycoprotein

escaped processing in the cis-Golgi. In all cases, N220Q/N229Q

(Figure 1E–G; <106 kDa) isolated from the various cell lines

migrated faster than the wild type Kv3.1, and the migration was

virtually identical in all cell lines. Further the electrophoretic

migration of N220Q/N229Q was similar to those of wild type

Kv3.1 from Pro-5, Lec1 and LEC10B cells treated with PNGase F,

as well as wild type Kv3.1 from Lec1 cells treated with Endo H.

When wild type Kv3.1 isolated from either Pro-5 or LEC10B cells

was treated with neuraminidase, small increases in electrophoretic

migration could be observed. In contrast, this small shift was

undetected for wild type Kv3.1 expressed in Lec1 cells, as well as

N220Q/N220Q from all three cell lines.

We also analyzed total membranes from Pro-5 (Figure 1H),

Lec1 (Figure 1I) or LEC10B (Figure 1J) CHO cells expressing E-

cadherin on Western blots. We found that E-cadherin expressed in

all three cell groups treated with PNGase F caused an increase in

electrophoretic mobility while only E-cadherin expressed in Lec1

cells migrated faster when treated with Endo H. Electrophoretic

mobility shifts generated by neuraminidase were quite subtle for E-

cadherin expressed in either Pro-5 or LEC10B cell lines. Further,

the electrophoretic migration appeared slightly slower for E-

cadherin isolated from Pro-5 cells (<168 kDa) than that from

LEC10B cells (<165 kDa). E-cadherin from Lec1 cells

(<161 kDa) was the smallest. Therefore, these results demonstrat-

ed that the greater part of the Kv3.1 and E-cadherin glycoproteins

from Pro-5 and LEC10B cells had complex N-glycans while

oligomannose N-glycans composed these proteins from Lec1 cells.

Further the major Kv3.1 glycoprotein expressed in the Pro-5 cells

was different relative to that from LEC10B cells since the

electrophoretic migrations were dissimilar, suggesting that the N-

glycans of Kv3.1 expressed in LEC10B were of bisecting type.

Importantly, these results also revealed that Kv3.1 and E-cadherin

proteins tagged with GFP were folded correctly since the N-glycans

were processed in the Pro-5 and LEC10B cell lines.

To further define the major type of N-glycans attached to the

various Kv3.1 and E-cadherin glycoproteins expressed in Pro-5,

Lec1 and LEC10B cell lines, we conducted lectin blotting of total

membranes and GFP immunopurified samples. We identified

complex, oligomannose, and bisecting type N-glycans of glyco-

proteins by utilization of the following lectins: Phaseolus vulgaris

Glycans Alter Glycoprotein Arrangement in Membrane
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Leucoagglutinin (L-PHA), Galanthus Nivalis Lectin (GNL), and

Phaseolus vulgaris Erythroagglutinin (E-PHA), respectively [13]. As

expected, lectin blots of total membranes revealed that by far the

majority of the glycoproteins expressed in either the Kv3.1

(Figure 2A) or E-cadherin (Figure 2B) transfected Pro-5, Lec1 and

LEC10B cell lines consisted of complex, oligomannose and

bisecting type N-glycans, respectively. Further the majority of

glycoproteins expressed in both transfected LEC10B cells also

interacted with L-PHA while they did not interact with GNL,

indicating that the majority of glycoproteins with bisecting type N-

glycans were complex N-glycans. In both cases, relative amounts of

Figure 1. Western blots of Kv3.1 and E-cadherin glycoproteins expressed in various CHO cell lines. Diagram depicting the predominant
N-linked glycans present in each CHO cell line studied (A). Symbolic nomenclature is presented as outlined by the Consortium for Functional
Glycomics Nomenclature Committee as follows: &, N-acetylglucosamine;Ngreen circle, mannose;Nyellow circle, galactose; ¤, sialic acid; m, fucose.
Western blots of wild type (Wt) and N220Q/N229Q Kv3.1 proteins, and E-cadherin glycoprotein digested (+) and undigested (2) with PNGase F, Endo
H, and neuraminidase (neu) when heterologously expressed in Pro-5 (B,E,H), Lec1 (C,F,I), and LEC10B (D,G,J) cells, as indicated. Dashed lines below
and/or above the immunobands on the various panels were employed to emphasize the small electrophoretic shifts. Solid black vertical lines denote
different blot. The numbers adjacent to the Western blots represent the Kaleidoscope markers (in kDa).
doi:10.1371/journal.pone.0075013.g001
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total membrane proteins loaded were similar, as shown by

coomassie blue staining of PVDF membranes (Figure 2C and 2D).

Lectin blots of immunopurified GFP tagged Kv3.1 (Figure 2E,

lane 2) and E-cadherin (Figure 2F, lane 1) showed that E-PHA

interacted with glycoproteins from Kv3.1 and E-cadherin trans-

fected LEC10B cells, respectively. Alternatively, E-PHA interac-

tions were unobserved from Kv3.1 (Figure 2E, lane 1) and E-

cadherin (Figure 2F, lane 2) transfected Pro-5 cells. Adjacent

Western blots revealed that lectin staining was observed at a

similar position as the immunoband of the Kv3.1 glycoprotein

expressed in LEC10B cells (Figure 2E, lane 4), and that the top

lectin stained band was at a similar position as the E-cadherin

immunoband from E-cadherin transfected LEC10B cells

(Figure 2F, lane 5). Lectin blots, along with Western blots and

glycosidase digestion reactions, revealed that the major form of

either of Kv3.1 or E-cadherin glycoproteins expressed in Pro-5,

Lec1 and LEC10B cell lines consist of complex, oligomannose and

bisecting type N-glycans, respectively. These results are in

agreement with previous studies of these CHO cell lines [13,14].

As such, we will refer to the predominant form of wild type Kv3.1

Figure 2. Lectin blots of total membranes and immunopurified Kv3.1 and E-cadherin proteins from transfected CHO cell lines. Total
membranes (,25 mg) from Pro-5, Lec1, and LEC10B cells transfected with wild type Kv3.1 (A) and E-cadherin (B) were probed with L-PHA (,5 mg/mL),
E-PHA (5–10 mg/mL), and GNL (,10 mg/mL). Similar amounts of electrophoresed proteins from total membranes were also stained with Coomassie
blue (C,D). Black arrowheads denote the 75, 100, 150 and 250 kDa markers. Lectin blots of immunopurified GFP tagged Kv3.1 and E-cadherin from
transfected Pro-5 and LEC10B cells (E,F). Glycoproteins were probed with E-PHA (5–20 mg/mL). Western blots were run in parallel to denote position
and relative amount of GFP-Kv3.1 and E-cadherin protein. Grey arrowheads point to GFP tagged Kv3.1 (E) and E-cadherin (F) proteins expressed in
LEC10B cells while black arrowheads represent the 100 and 150 kDa markers.
doi:10.1371/journal.pone.0075013.g002

Glycans Alter Glycoprotein Arrangement in Membrane

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e75013



Glycans Alter Glycoprotein Arrangement in Membrane

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e75013



and E-cadherin glycoproteins as composed of complex, oligoman-

nose and bisecting type N-glycans from Pro-5, Lec1 and LEC10B

cells, respectively, and furthermore the N220Q/N229Q Kv3.1

protein as unglycosylated Kv3.1 protein throughout the main text

and figures.

Localization of the Kv3.1 glycoprotein to the cell-cell
border

We employed total internal reflection fluorescence (TIRF)

microscopy to acquire high contrast images of live Pro-5 cells

expressing glycosylated (left panel) and unglycosylated (right panel)

Kv3.1 tagged with EGFP at the plasma membrane (Figure 3A).

Alternatively, images acquired from the same channel after

modifying the laser beam to attain wide-field fluorescence

excitation showed more diffuse and dimmer signals (Figure 3B).

Of note, the endoplasmic reticulum and nucleus were clearly

visible in the wide-field images, and quite lacking in the TIRF

images. Fluorescence intensity signals from TIRF images versus

wide-field images verified that the signals from TIRF images were

of higher intensity (mean fluorescence intensity values of TIRF

images to mean fluorescence intensity values of wide-field images

were 1.4260.02, n = 41 and 1.3960.04, n = 18 for Pro-5 cells

expressing glycosylated and unglycosylated Kv3.1, respectively).

Further these results support that images could be obtained in

TIRF mode to examine greater details of the spatial location of

Kv3.1 in or near the adherent plasma membrane. Differential

interference contrast (DIC) images were obtained in the same

plane to identify the position of the cells in TIRF images

(Figure 3C). Fluorescence intensity signals were quite strong at the

cell-cell interface, as well as the exterior regions of the membrane

patch, for Pro-5 cells expressing glycosylated Kv3.1, while the

signals were distributed throughout the entire patch with perhaps

less signal at the cell-cell border for those expressing unglycosy-

lated Kv3.1. These results verified expression of glycosylated and

unglycosylated Kv3.1 in the plasma membrane [11,18,19], and

furthermore that the N-glycans of Kv3.1 contributes to its

localization at the cell-cell border.

Glycan structures of Kv3.1 and E-cadherin impacts
localization to cell-cell border

Changes in the glycosylation pathway of Lec1 and LEC10B

cells led to the production of different forms of the Kv3.1 and E-

cadherin glycoproteins than those expressed in the Pro-5 cells. We

compared TIRF microscopy images of Kv3.1 (Figure 3D) and E-

cadherin (Figure 3E) glycoprotein from Pro-5 (left panels), Lec1

(middle panels), and LEC10B (right panels) cells. In all cases, DIC

images of Kv3.1 (Figure 3F) and E-cadherin (Figure 3G), as well as

wide-field images (not shown), were acquired to correlate

fluorescence signals at specific positions within the cell patch.

Fluorescence intensity signals were quite strong at the cell-cell

interface, and outer regions of adhered membrane patches, for

Kv3.1 expressed in LEC10B cells, similar to that expressed in

Pro-5 cells. On the contrary, when Kv3.1 was associated with

oligomannose N-glycans, the fluorescence intensity signal was

detected at the cell-cell border but to a much lesser degree than the

other forms of Kv3.1, and furthermore the distribution of the

signal appeared to be greater in the interior plasma membrane

region of each cell of the membrane patch.

For each form of the E-cadherin glycoprotein, fluorescence

intensity signals were more concentrated at the cell-cell border

than other regions of the adherent membrane patch. Additionally,

the E-cadherin glycoprotein expressed in Pro-5 and Lec1 cells had

very little fluorescence signal in the interior plasma membrane

region of each cell of the membrane patch while the signal from E-

cadherin transfected LEC10B cells was found in substantial

amounts in this region. The exterior regions of the cell membrane

patch had quite high fluorescence intensity signal for Pro-5 and

Lec1 cells expressing E-cadherin while the signal in the E-cadherin

transfected LEC10B cells were considerably lower. Of note, if one

of the two interacting cells did not express E-cadherin then it was

not observed at the cell-cell border (Figure 3E, top panel of middle

row). This observation supports that the predominant interaction

of E-cadherin is homotypic, instead of heterotypic [7].

To further characterize the distribution of the glycoproteins in

the cell membrane, we determined the ratio of the fluorescence

intensity signal at the cell-cell interface (Icell-cell) of the membrane

patch to that away from this interface (Icell) for TIRF images

(Figure 3H). This measurement revealed that Kv3.1 with sialylated

complex N-glycans was more strongly localized to the cell-cell

border than that with bisecting type N-glycans and much stronger

than that with oligomannose N-glycans, and furthermore that the

aglycoform was more prevalent at other regions of the adherent

membrane patch (Figure 3I). Of note, this ratio of unglycosylated

Kv3.1 expressed in Pro-5 cells (Icell-cell/Icell was 0.7560.03, n = 56)

was similar to those in the Lec1 and LEC10B cells expressing the

unglycosylated Kv3.1 (Icell-cell/Icell was 0.7260.03, n = 68; and

0.7960.03, n = 64 for Lec1 and LEC10B cells, respectively). As

such, this data suggests that the distribution of unglycosylated

Kv3.1 in adhered membrane patches was insensitive to glycocon-

jugates at the cell surface. On the contrary, the amount of E-

cadherin localized to the cell-cell border was higher in Lec1 cells

than Pro-5 cells, and lowest in LEC10B cells (Figure 3J).

Therefore, these results support that distinct N-glycan structures

attached to Kv3.1 and E-cadherin glycoproteins, as well as the

individual protein structure, were responsible for the differential

distribution of the glycoproteins at the cell-cell border in the

adhered membrane patch of groups of cells.

To elaborate on the information captured by TIRF images, we

determined values of the number of particles in total adherent

membrane patch, in interior plasma membrane of the patch with

Figure 3. Variations in the glycosylation pathway impact the localization of Kv3.1 and E-cadherin at the cell-cell border. Microscopy
images were acquired in TIRF (A), wide-field (B), and DIC (C) modes for EGFP tagged wild type (left panels) and N220Q/N229Q (right panels) Kv3.1
proteins expressed in Pro-5 cells. TIRF (D,E) and DIC (F,G) images of the wild type Kv3.1 (D,F) and E-cadherin (E,G) proteins expressed in Pro-5 (left
panels), Lec1 (middle panels), and LEC10B (right panels) cells. Representative scale bar (5 mM) was identical for all images. White arrows point to cell-
cell interface. The enlarged TIRF image illustrates the measurements for determining the amount of Kv3.1 and E-cadherin at the cell-cell interface (H).
Fluorescence intensity measurements were determined at the cell-cell interface (Icell-cell), and away from the cell-cell interface (Icell) of the cell
membrane patch. White arrows point to designated regions in the black rectangle with four dividing lines. The scale bar represents the size of the
black rectangles. The bar graph reports the Icell-cell/Icell of N220Q/N229Q (unglycosylated) and wild type (glycosylated) Kv3.1 proteins (I), as well as E-
cadherin (J), expressed in the various CHO cell lines. At the 0.000001 level, the differences of the population means are significantly different by one-
way ANOVA with Bonferroni adjustment (*). The percent of particles located in the interior (K,M), excluding the particles at the cell-cell interface, and
exterior (L,N) regions of the membrane patch was calculated for two interacting cells. At the 0.02 and 0.03 level, the differences of the population
means are significantly different by student t-test (*) for the Kv3.1 and E-cadherin proteins, respectively. NS denotes samples are not significantly
different.
doi:10.1371/journal.pone.0075013.g003
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exclusion of the cell-cell interface, and in exterior border of the

membrane patch. The percent of interior membrane particles for

the Kv3.1 glycoprotein with either sialylated complex or bisecting

type N-glycans were at least 2-fold lower than that with

oligomannose N-glycans (Figure 3K) which correlated with the

higher percent of exterior membrane particles for the earlier two

forms of the glycoprotein (Figure 3L). Mean area of the particles in

the total membrane patch for Kv3.1 expressed in Lec1 cells

(80613 pixels, n = 14) was smaller than those expressed in Pro-5

(143619 pixels, n = 12) and LEC10B (136619 pixels, n = 15) while

the number of particles in the total membrane patch for Kv3.1

expressed in Lec1 cells (5567 particles, n = 14) was slightly larger

Figure 4. Distribution of Kv3.1 and E-cadherin at the cell surface of single cells. TIRF (A) and DIC (B) microscopy images of Pro-5 (left
panels), Lec1 (middle panels) and LEC10B (right panels) cells expressing either Kv3.1 (upper panels) or E-cadherin (lower panels) are shown.
Representative graphs of the mean particle numbers, areas (pixels), and intensities (AU) for Kv3.1 (C) and E-cadherin (D) are shown. The percent of
particles located in the exterior region of the cell for Kv3.1 (E) and E-cadherin (G) was determined. The particle area in the exterior of the cell relative
to the particle area in the interior of the cell for Kv3.1 (F) and E-cadherin (H) was calculated.
doi:10.1371/journal.pone.0075013.g004
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than those expressed in Pro-5 (4866 particles, n = 12) and

LEC10B (4966 particles, n = 15). Further the particle size and

number were about 2-fold larger in exterior regions compared to

interior regions of the latter two transfected cell lines while in the

former cell line, these values were quite similar throughout. Mean

intensity values of the particles from total membrane patches for

Pro-5, Lec1, and LEC10B were not significantly different for the

various forms of Kv3.1.

The E-cadherin glycoprotein expressed in the various cell lines

also revealed differences in the percent of particles in the various

regions of the membrane patch. E-cadherin with bisecting type N-

glycans had at least 5-fold more E-cadherin particles localized to

the interior region of the membrane patch than E-cadherin with

complex or oligomannose N-glycans (Figure 3M). Further the

amount of E-cadherin with complex N-glycan structures was

significantly greater at the exterior region of the membrane patch

than that with oligomannose N-glycans, and about 2-fold greater

than that with bisecting type N-glycans (Figure 3N). The area and

mean intensity of E-cadherin particles in total membrane patches,

and designated interior and exterior regions of patches were not

significantly different in the various CHO cell lines. Taken

together, these results revealed that N-glycan structures, along with

protein structure, guide the spatial arrangement of various forms

of the Kv3.1 and E-cadherin glycoproteins in adherent membrane

patches of groups of cells.

Distribution of glycoproteins in single cells
Since N-glycan structures of both Kv3.1 and E-cadherin were

shown to have an impact on their spatial arrangement in a cell

which interacted with other cells, we ascertained whether this

occurred in single cells. Representative TIRF (Figure 4A) and DIC

(Figure 4B) microscopy images of single Pro-5 (left panels), Lec1

(middle panels) and LEC10B (right panels) cells expressing either

Kv3.1 (upper panels) or E-cadherin (lower panels) are shown. In

all cases, the fluorescence signal was more concentrated on

exterior regions of the cell membrane patches than on interior

regions. The general trend was that Lec1 cells expressing either

Kv3.1 (Figure 4C) or E-cadherin (Figure 4D) had a greater

number of particles and the size of the particles was smaller than

those from transfected Pro-5 and LEC10B cells. In all cases, the

mean intensity of the fluorescence was quite similar. When

comparing particles in interior regions of the membrane patches to

those at the edge or exterior regions, a similar pattern was detected

for cells transfected with either Kv3.1 (Figure 4E,F) or E-cadherin

(Figure 4G,H). However, there were a greater percentage of

particles in the exterior region for E-cadherin transfected Pro-5

and Lec1 cells than those from Kv3.1 transfected Pro-5 and Lec1

cells. Further the size of the particle in exterior regions relative to

the interior was significantly greater for the E-cadherin transfected

Lec1 cells than those from Kv3.1 transfected Lec1 cells. Of note,

differences were not observed between the Lec10B cells transfect-

ed with either Kv3.1 or E-cadherin. Taken together, glycoconju-

gates at the cell surface appeared to dominate the distribution of

the glycoproteins in the adhered plasma membrane of single cells.

However, subtle changes due to a given membrane glycoprotein

could be detected in the transfected Pro-5 and Lec1 cells.

Cell migratory rates are influenced by glycans of Kv3.1
Recently, it was shown that neuroblastoma cells heterologously

expressing glycosylated Kv3.1 migrate faster than those expressing

unglycosylated Kv3.1 [11]. We therefore ascertained whether

different N-glycan structures of distinct Kv3.1 glycoproteins could

alter cell migration since their distribution in the plasma

membrane was different. We performed cell wound healing assays

for glycosylated and unglycosylated Kv3.1 expressed in Pro-5,

Lec1 and LEC10B cells (Figure 5). Similar cell wound sizes (about

83 mm) were monitored at 0 h and 16 h for glycosylated and

unglycosylated Kv3.1 expressed in Pro-5 (top row), Lec1 (middle

row), and LEC10B (bottom row) cells (Figure 5A). Cell wound

closures were greater for glycosylated Kv3.1 than its unglycosy-

lated counterpart in each of the distinct cell lines (Figure 5B).

Further the migratory rates for glycosylated Kv3.1 from both Lec1

and LEC10B cells were slower than that in Pro-5 cells while they

were not different for the aglycoform among the various cell lines.

To illustrate how the structure of N-glycans of Kv3.1 altered cell

migration, we determined the percent of closure increase due to

the N-glycan attached to Kv3.1 by taking the difference in wound

closure between glycosylated and unglycosylated Kv3.1, and then

dividing the difference by the closure of unglycosylated Kv3.1

(Figure 5B, Inset). These results revealed that sialylated complex

N-glycans of Kv3.1 contributed to a greater degree to cell wound

Figure 5. Rate of CHO cell migration is enhanced by Kv3.1. Cell
wounds were generated for glycosylated and unglycosylated Kv3.1, and
then images were captured at 0 and 16 h time points for Pro-5 (top
row), Lec1 (middle row), and LEC10B (bottom row) (A). Rate of cell
wound closure was determined for glycosylated and unglycosylated
Kv3.1 expressed in the various CHO cell lines (B). Region of wound
measured is indicated by the two dotted white lines per image. The
percent of wound closure is the increase in wound closure due to the N-
glycan attached to Kv3.1 (B, inset). Asterisks indicate significant
differences in mean values at a probability of P,0.03.
doi:10.1371/journal.pone.0075013.g005
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closure than either oligomannose N-glycans or N-glycans with

bisecting GlcNAc residues. Therefore, this study indicated that N-

glycan structures associated with Kv3.1 can impact cell migratory

rates.

N-Glycans of E-cadherin alter cell-cell adhesion
TIRF microscopy measurements showed that E-cadherin with

oligomannose N-glycans had more E-cadherin at the cell-cell

interface than that with complex N-glycans and much more than

that with bisecting type N-glycans. As such, we anticipated that

Lec1 cells transfected with E-cadherin would have stronger cell-

cell interactions than E-cadherin transfected Pro-5 cells and much

stronger than the E-cadherin transfected LEC10B cells. Repre-

sentative images from cell dissociation assays are shown for Pro-5

(left panels), Lec1 (middle panels) and LEC10B (right panels) cells

expressing E-cadherin (upper two panels) and those similar cells

not transfected (lower two panels) (Figure 6A). These images

revealed that E-cadherin transfected Lec1 cells (110696517 pixels,

n = 1086) had larger particles (.5 cells/aggregate) than E-

cadherin transfected Pro-5 cells (53066416 pixels, n = 529) and

much larger than E-cadherin transfected LEC10B cells (2463688

pixels, n = 717). A similar size pattern was observed for their

nontransfected counterparts (Lec1, 38516162 pixels, n = 1029;

Pro-5, 31956351 pixels, n = 195; LEC10B, 2123690 pixels,

Figure 6. Glycan structures of E-cadherin alter cell dissociation. Microscopy images were acquired for Pro-5 (left panels), Lec1 (middle
panels), and LEC10B (right panels) cells transfected with E-cadherin (upper panels) and nontransfected (bottom panels) (A). Particles of interest are
encircled. Percents of particle area (B) and particle number (C) represent increases in the mean values of the particles between the E-cadherin
transfected CHO cells and the corresponding nontransfected CHO cells, n = 125 images. Asterisks indicate significant differences in mean values at a
probability of P,0.03.
doi:10.1371/journal.pone.0075013.g006
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n = 320). However, the percent of increase in particle area for E-

cadherin transfected Lec1 cells was about 3-fold and 12-fold

greater than transfected Pro-5 and LEC10B cells, respectively

(Figure 6B). Further the percent of increase of particle area was

about 4-fold greater for transfected Pro-5 cells than transfected

LEC10B cells. Next, we determined the percent of increase in the

number of particles to be higher for E-cadherin transfected Pro-5

cells than transfected LEC10B cells while the particle number was

unchanged for transfected Lec1 cells (Figure 6C). Of note, the

number of particles for nontransfected cells was highest for Lec1

(8.260.3 particle number/image, n = 125), and lowest for Pro-5

(1.660.1 particle number/image, n = 125) while LEC10B

(2.560.2 particle number/image, n = 125) had intermediate levels.

A similar trend was observed for CHO cells transfected with E-

cadherin (Lec1, 8.160.4 particle number/image, n = 125;

LEC10B, 5.760.2 particle number/image, n = 125; Pro-5,

4.360.2 particle number/image, n = 125). Overall, these results

showed that the type of N-glycans at the cell surface could

influence the size and number of cell aggregates upon similar

disruption procedures of the various CHO cell monolayers.

Further transfection of the various CHO cell lines with E-cadherin

had an even greater impact on the size and number of the

particles. In this regard, the E-cadherin glycoprotein with

oligomannose N-glycans had stronger cell-cell interactions than

that with complex N-glycans and much stronger than that with

bisecting GlcNAc N-glycans.

Discussion

It has long been appreciated that membrane proteins contain

information about their association, clustering, and distribution in

the plasma membrane of cells. However, the importance of N-

glycan structures of membrane glycoproteins on their lateral

heterogeneity in biological membranes is not well known [20].

Herein we report that changes in N-glycan structures of two

distinct glycoproteins had a major impact on their distribution in

the adherent plasma membrane when two or more cells interacted

with each other (Figure 7). Further these changes in spatial

arrangement due to N-glycan structure were much less pro-

nounced for single cells. This remarkable difference illustrates that

the information contained by N-glycans of glycoproteins is crucial

for cells to communicate with each other. Heterologous expression

of either Kv3.1 or E-cadherin in Pro-5, Lec1 and LEC10B cell

lines was employed to produce major forms of each glycoprotein

with complex, oligomannose and bisecting type N-glycans.

Without exception, all forms of each of the glycoproteins conferred

different distribution patterns. These patterns were also dependent

on the protein since the glycoprotein with oligomannose or

complex N-glycans had the highest levels of E-cadherin and Kv3.1

at the cell-cell border, respectively. On the other hand, the lowest

levels of E-cadherin and Kv3.1 at the cell-cell border were

observed for the glycoprotein with bisecting type N-glycans or

oligomannose N-glycans, respectively. In both cases, these lowest

levels correlated with the highest levels of the glycoproteins in the

interior regions of the membrane patch. These results support that

the N-glycans are informational biomolecules that relay informa-

tion for the spatial arrangement of glycoproteins in the plasma

membrane, and furthermore cell-cell interactions are required for

deciphering much of this information.

We showed that the major forms of both glycoproteins were

consistent to the type of N-glycan expressed in each CHO cell line,

such as complex, oligomannose and bisecting type. Kv3.1 has two

sites which are processed to complex N-glycans [9] with a minimal

amount evading glycan processing in the cis-Golgi of the Pro-5 cell

line. E-cadherin has four utilized sites [8], and our results indicated

that the occupied sites had complex N-glycans when expressed in

Pro-5 cells. Further expression of E-cadherin with oligomannose

N-glycans was undetected in this cell line. Taken together, the fine-

tuning of cell-cell interactions remains to be defined with regards

to N-glycan multiplicity and microheterogeneity of N-glycans at

the various sites.

Figure 7. Model depicting the information encoded by glycan
structures of Kv3.1 and E-cadherin. Top drawings show predom-
inant glycans present in each CHO cell line studied [14]. In the cell
drawings, green dashes denote the relative amounts of GFP tagged
Kv3.1 or E-cadherin particles in the adhered membrane of interacting
(Figure 3) and non-interacting (Figure 4) cells. The relative effects of the
glycoproteins on cell migration (Figure 5) and cell adhesion (Figure 6)
are shown with (x) signs.
doi:10.1371/journal.pone.0075013.g007
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Control of the spatial arrangement of glycosylated transmem-

brane proteins at the cell surface is a critical aspect of cellular

function. As the number of occupied N-glycosylation sites,

combined with branched N-glycans, was increased for a given

membrane glycoprotein, then more of the protein was concen-

trated in the plasma membrane [21]. Enrichment of the

glycoproteins in this type of microdomain occurs since crosslinking

of the glycoproteins to the galectins delays endocytosis. Binding

studies of galectins with various CHO cell lines showed that as N-

glycan branching is decreased then the galectin-glycan interactions

are reduced [22]. We observed that the area of the particles was

smaller for the single transfected Lec1 cells than the transfected

Pro-5 and LEC10B cells, as well as Kv3.1 with oligomannose N-

glycans in groups of cells. Next, differences were detected at cell

adhesion junctions. Particle sizes of Kv3.1 and E-cadherin at the

cell-cell border were larger relative to other regions in the

adherent membrane, and the level of each of the glycoproteins at

this border was dependent on the glycan structure. Therefore,

these results indicate that the content of two distinct microdomains

in the plasma membrane depends on the N-glycan structure and

primary sequence of the glycoprotein. As such, it is critical to

consider the role of the N-glycans in modulating movement of

glycoproteins in the plasma membrane.

N-Glycosylation processing of E-cadherin from oligomannose

N-glycans to complex N-glycans is a critical factor in determining

the strength of cell-cell interactions. E-cadherin with increased

levels of oligomannose N-glycans or reduced occupancy of the N-

glycosylation sites promotes the establishment of stable adhesion

junctions while increased occupancy and complex N-glycans

significantly weakened these junctions [23]. Our results showed

that cells expressing E-cadherin with oligomannose N-glycans had

more E-cadherin at the cell-cell border than that with complex N-

glycans, and furthermore the higher concentration of E-cadherin

at the cell-cell border enhanced cell-cell adhesion. These findings

explain the earlier study, and directly reveal that distinct N-glycan

structures of E-cadherin provide information for tuning cell-cell

interactions. It has also been proposed that cell-cell interactions

were stronger when Mgat3 expression was increased due to

enhanced cell surface expression of the E-cadherin and larger cell

aggregates were observed by the classical cell association assay

[24]. This proposal is in contradiction to the amount of E-cadherin

at the contact site between cells for Pro-5 cells relative to the

LEC10B cells. However, our spatial arrangement of E-cadherin

with bisecting type N-glycans could result in larger cell aggregates

since there was more E-cadherin away from the cell-cell border.

Thus, our results show a direct correlation between the level of E-

cadherin at the cell-cell border and strength of the cell-cell

interaction. As such, N-glycan structures of E-cadherin contain

information about the strength of the calcium-dependent homo-

typic interactions between cells.

Predominant glycan structures have been implicated as critical

determinants for defining the stage and path of tumor progression.

Knockdown of Mgat5 in mice [25], as well as Mgat1 knockdown

in cells [26], results in a decrease in tumor incidence, growth and

metastasis. More recently, it was proposed that certain forms of the

E-cadherin glycoprotein can increase metastasis and progression

of malignancy [27,28]. In this regard, E-cadherin expressed in cells

that increase the number and degree of b1,6-GlcNAc branched N-

glycans enhance tumor progression and metastasis while increases

in E-cadherin with oligomannose N-glycans minimize these

processes. Our study evolves this mechanism by directly demon-

strating that E-cadherin with oligomannose N-glycans localizes to

the cell-cell border to a greater extent than that with complex N-

glycans. Further this higher expression correlated with an increase

in cell-cell adhesion. Taken together, cancer cells producing

glycoproteins with complex N-glycans, instead of oligomannose N-

glycans, are more likely to detach from the originating tumor and

invade neighboring tissues since less E-cadherin is directed to the

contact site between cells.

Modifications of the N-glycan structures of Kv3.1 have critical

effects on cell migration. Previous studies from our lab showed that

neuroblastoma cells heterologously expressing Kv3.1 with two N-

glycans migrated faster than those with one N-glycan, and much

faster than unglycosylated Kv3.1 [11]. In the present study, it was

verified that cells expressing unglycosylated Kv3.1 migrated slower

than those expressing glycosylated Kv3.1, and furthermore cells

expressing Kv3.1 with complex N-glycans migrated faster than

cells expressing Kv3.1 with either oligomannose N-glycans or N-

glycans with a bisecting GlcNAc residue. Since enhanced cell

migration is a feature of malignant transformation and an

increased ratio of complex N-glycan structures to oligomannose

N-glycans accompanies tumor progression [26], it may be that

increased expression of the Kv3.1 channel in cancerous cells [29]

impacts cellular migratory rates.

We conclude that N-glycan structures contain information that

guides the spatial arrangement of a voltage-gated potassium

channel and a major adhesion molecule in the plasma membrane.

The information encoded by the different N-glycan structures for

both transmembrane glycoproteins were intensified when cells

were interacting, opposed to individual cells. The N-glycosylation

process has a significant impact in mammalians while this process

can be obliterated in single cells without deleterious consequences.

As such, our results provide insight into how aberrant changes in

the N-glycosylation process prove detrimental in mammalian

development, growth, and disease progression.
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