404 research outputs found

    A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface

    Get PDF
    The lipopolysaccharide (LPS) forms the surface-exposed leaflet of the outer membrane (OM) of Gram-negative bacteria, an organelle that shields the underlying peptidoglycan (PG) cell wall. Both LPS and PG are essential cell envelope components that are synthesized independently and assembled by dedicated transenvelope multiprotein complexes. We have identified a point-mutation in the gene for O-antigen ligase (WaaL) in Escherichia coli that causes LPS to be modified with PG subunits, intersecting these two pathways. Synthesis of the PG-modified LPS (LPS*) requires ready access to the small PG precursor pool but does not weaken cell wall integrity, challenging models of precursor sequestration at PG assembly machinery. LPS* is efficiently transported to the cell surface without impairing OM function. Because LPS* contains the canonical vancomycin binding site, these surface-exposed molecules confer increased vancomycin-resistance by functioning as molecular decoys that titrate the antibiotic away from its intracellular target. This unexpected LPS glycosylation fuses two potent pathogen-associated molecular patterns (PAMPs).Marcin Grabowicz, Dorothee Andres, Matthew D Lebar, Goran Malojčić, Daniel Kahne, Thomas J Silhav

    Global citizens: Who are they?

    Get PDF
    A growing desire to instigate global citizenship programmes in Higher Education (HE) has led to the development of optional structured opportunities for students to engage in prosocial activities. One of the challenges facing such programmes is to demonstrate and plan for the personal growth of those students. This paper reports the dispositional, prosocial and attitudinal characteristics; knowledge and skills; and perceptions of social justice that students who undertake these activities bring to their initial participation. The findings indicate, that in comparison to a control group, the students differ significantly in a number of important ways (e.g. conscientiousness, extraversion, openness; Machiavellianism, prosocial behaviour; self-esteem; skills relating to social action and tolerance and understanding and their concern regarding social problems). However, consideration should be given to the ways in which those students can be developed within a framework for social justice. Further, recruitment procedures for citizenship programmes in general should encourage the participation of a more diverse group of students than currently appears to be the case

    The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains

    Get PDF
    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components

    Ketone Hydrosilylation with Sugar Silanes Followed by Intramolecular Aglycone Delivery: An Orthogonal Glycosylation Strategy

    Full text link
    Gettin' a little sugarā€”no alcohol required : A procedure for the direct glycosylation of ketones without a hydroxy intermediate enables the site-selective glycosylation of hydroxyketones at the ketone or the alcohol functionality without the use of protecting groups on the aglycone (see scheme). Site selectivity is controlled by the catalyst structure in hydrosilylation and dehydrogenative silylation reactions with sugar silanes. Bn=benzyl.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63086/1/anie_200901666_sm_miscellaneous_information.pd

    A Developmental Perspective on Community Service in Adolescence

    Get PDF
    A substantial number of U.S. adolescents currently participate in community service and there is increased national interest in service programs. This article assesses the assumption of developmental benefits to service participants by critically reviewing 44 empirical studies. It offers a theoretical framework for understanding the findings by connecting them to identity development and delineating three pertinent concepts: agency, social relatedness, and moral-political awareness. These concepts are applied to studies that investigate: ( 1) the characteristics and motivations of participants, ( 2) the effects of service, and ( 3) the process of service. The findings support the conclusion that service activities which provide opportunities for intense experiences and social interactions are often associated with prosocial development. The findings also point to the need for more studies focused on particular service programs and on relationships between service providers and those served

    Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance

    Full text link
    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions affected by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also impact on our understanding of antibiotic drug action in bacteria.Comment: Comments: This paper consists of the main article (6 pages, 5 figures) plus Supplemental Material (6 pages, 3 figures). More details are available at http://www.london-nano.co
    • ā€¦
    corecore