6,108 research outputs found

    The Hudson Bay Lithospheric Experiment (HuBLE) : Insights into Precambrian Plate Tectonics and the Development of Mantle Keels

    Get PDF
    The UK component of HuBLE was supported by Natural Environment Research Council (NERC) grant NE/F007337/1, with financial and logistical support from the Geological Survey of Canada, Canada–Nunavut Geoscience Office, SEIS-UK (the seismic node of NERC), and First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. Discussions with M. St-Onge, T. Skulski, D. Corrigan and M. Sanborne-Barrie were helpful for interpretation of the data. D. Eaton and F. A. Darbyshire acknowledge the Natural Sciences and Engineering Research Council. Four stations on the Belcher Islands and northern Quebec were installed by the University of Western Ontario and funded through a grant to D. Eaton (UWO Academic Development Fund). I. Bastow is funded by the Leverhulme Trust. This is Natural Resources Canada Contribution 20130084 to its Geomapping for Energy and Minerals Program. This work has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 240473 ‘CoMITAC’.Peer reviewedPublisher PD

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    Spreading of Latex Particles on a Substrate

    Full text link
    We have investigated both experimentally and theoretically the spreading behavior of latex particles deposited on solid substrates. These particles, which are composed of cross-linked polymer chains, have an intrinsic elastic modulus. We show that the elasticity must be considered to account for the observed contact angle between the particle and the solid substrate, as measured through atomic force microscopy techniques. In particular, the work of adhesion computed within our model can be significantly larger than that from the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    Diffusion on a heptagonal lattice

    Full text link
    We study the diffusion phenomena on the negatively curved surface made up of congruent heptagons. Unlike the usual two-dimensional plane, this structure makes the boundary increase exponentially with the distance from the center, and hence the displacement of a classical random walker increases linearly in time. The diffusion of a quantum particle put on the heptagonal lattice is also studied in the framework of the tight-binding model Hamiltonian, and we again find the linear diffusion like the classical random walk. A comparison with diffusion on complex networks is also made.Comment: 5 pages, 6 figure

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Drying and cracking mechanisms in a starch slurry

    Get PDF
    Starch-water slurries are commonly used to study fracture dynamics. Drying starch-cakes benefit from being simple, economical, and reproducible systems, and have been used to model desiccation fracture in soils, thin film fracture in paint, and columnar joints in lava. In this paper, the physical properties of starch-water mixtures are studied, and used to interpret and develop a multiphase transport model of drying. Starch-cakes are observed to have a nonlinear elastic modulus, and a desiccation strain that is comparable to that generated by their maximum achievable capillary pressure. It is shown that a large material porosity is divided between pore spaces between starch grains, and pores within starch grains. This division of pore space leads to two distinct drying regimes, controlled by liquid and vapor transport of water, respectively. The relatively unique ability for drying starch to generate columnar fracture patterns is shown to be linked to the unusually strong separation of these two transport mechanisms.Comment: 9 pages, 8 figures [revised in response to reviewer comments

    Comparing league formats with respect to match importance in Belgian football

    Get PDF
    Recently, most clubs in the highest Belgian football division have become convinced that the format of their league should be changed. Moreover, the TV station that broadcasts the league is pleading for a more attractive competition. However, the clubs have not been able to agree on a new league format, mainly because they have conflicting interests. In this paper, we compare the current league format, and three other formats that have been considered by the Royal Belgian Football Association. We simulate the course of each of these league formats, based on historical match results. We assume that the attractiveness of a format is determined by the importance of its games; our importance measure for a game is based on the number of teams for which this game can be decisive to reach a given goal. Furthermore, we provide an overview of how each league format aligns with the expectations and interests of each type of club

    On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    Full text link
    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the Atomic Force Microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input.Comment: Topical review; 82 pages, 61 figures; Format: Latex (iopart). Some figures are in Postscript Level
    corecore