102 research outputs found

    Direct Metal Laser-sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes

    Get PDF
    Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, which was attributed to the random grain orientation observed on both the planes. However, the average micro-hardness of the DMLS-fabricated 316L stainless steel in this contribution was approximately 25% higher than that of the as-cast one

    Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions

    Get PDF
    Disk-shaped 316L stainless steel parts with various diameters and heights were additively manufactured using a direct metal laser sintering (DMLS) technique. Neutron diffraction was used to profile the residual stresses in the samples before and after removal of the build plate and support structures. Moreover, distortion level of the parts before and after the removal was quantified using a coordinate measuring machine (CMM). Large tensile in-plane stresses (up to ≈ 400 MPa) were measured near the as-built disk top surfaces, where the stress magnitude decreased from the disk center to the edges. The stress gradient was steeper for the disks with smaller diameters and heights. Following the removal of the build plate and support structures, the magnitude of the in-plane residual stresses decreased dramatically (up to 330 MPa) whereas the axial stress magnitude did not change significantly. The stress relaxation caused the disks to distort, where the distortion metric was higher for the disks with smaller diameters and heights. The distribution of the residual stresses revealed a marked breakdown of self-similarity in their distribution even comparing disk-shaped samples that were fabricated under identical printing parameters; the stress field profiles were not linearly scaled as a function of height and diameter

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Periglacial environments and frozen ground in the central Pyrenean high mountain area: Ground thermal regime and distribution of landforms and processes

    Get PDF
    Producción CientíficaThe periglacial belt is located in the highest parts of temperate mountains. The balance between mean air and ground temperatures and the presence of water determine the effectiveness of periglacial processes related to permafrost, the active layer or seasonally frozen ground (SFG). This study combines thermal and geomorphological data obtained in four Pyrenean massifs (Infierno‐Argualas, Posets, Maladeta and Monte Perdido) to improve knowledge on the occurrence and distribution of frozen ground. The methodology used is based on the study of landforms as frozen ground indicators, mapping processes, ground temperature analysis, basal temperature of snow, thermal mapping and geomatic surveys on rock glaciers and protalus lobes. In the Pyrenean high mountain areas the lower limit of frozen ground is at ~2,650m a.s.l., possible permafrost appears above 2,650m a.s.l. on north‐ and south‐facing slopes, and probable permafrost is dominant above 2,900m a.s.l. Unfrozen ground with cold‐associated geomorphological processes reach 2,900m a.s.l. and unfrozen and frozen ground distribution points to a patchy pattern throughout the periglacial belt. The most widespread frozen grounds are SFG. The thermal data, mean annual ground temperature, cold season temperatures, bottom temperature snow measurements, freeze/thaw cycles and distribution of landforms permit the establishment of a periglacial land system divided into three main belts: infraperiglacial, middle periglacial and supraperiglacial. The large number of processes and landforms that are involved and their altitudinal and spatial organization make up a complex environment that determines the geoecological dynamics of high mountain areas.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (projects CGL2015-68144-R / GL2017- 82216-R

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    Comparative Analysis of Gene Content Evolution in Phytoplasmas and Mycoplasmas

    Get PDF
    Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization

    Regulation Mechanisms in Mixed and Pure Culture Microbial Fermentation

    No full text
    Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models. (C) 2014 Wiley Periodicals, Inc

    Complete genome sequence of the hemotrophic Mycoplasma suis strain KI3806

    Full text link
    Mycoplasma suis, a member of the hemotrophic mycoplasma (HM) group, parasitize erythrocytes of pigs. Increasing evidence suggests that M. suis is also a zoonotic agent. Highly pathogenic strains of M. suis (e.g., M. suis KI3806) have been demonstrated to invade erythrocytes. This complete sequenced and manually annotated genome of M. suis KI3806 is the first available from this species and from the HM group. The DNA was isolated from blood samples of experimentally infected pigs due to the lack of an in vitro cultivation system. The small circular chromosome of 709,270 bp, encoding an unexpectedly high number of hypothetical proteins and limited transport and metabolic capacities, could reflect the unique lifestyle of HM on the surface of erythrocytes

    Hemotrophic mycoplasmas induce programmed cell death in red blood cells

    Get PDF
    Hemotrophic mycoplasmas (HM) are uncultivable bacteria found on and in the red blood cells (RBCs). The main clinical sign of HM infections is the hemolytic anemia. However, anemia-inducing pathogenesis has not been totally clarified. In this work we used the splenectomized pig as animal model and Mycoplasma suis as a representative for hemotrophic mycoplasmas to study anemia pathogenesis. Eryptosis, i.e. programmed cell death of RBCs, is characterized by cell shrinkage, microvesiculation and phosphatidylserine (PS) exposure on the outer membrane. The eryptosis occurrence and its influence on anemia pathogenesis was observed over the time-course of M. suis infections in pigs using 3 M. suis isolates of differing virulence. All 3 isolates induced eryptosis, but with different characteristics. The occurrence of eryptosis could as well be confirmed in vitro: serum and plasma of an acutely ill pig induced PS exposure on erythrocytes drawn from healthy pigs. Since M. suis is able to induce eryptotic processes it is concluded that eryptosis is one anemia-inducing factor during M. suis infections and, therefore, plays a significant role in the pathogenesis of infectious anemia due to HM infection
    corecore