872 research outputs found

    Headwaters are critical reservoirs of microbial diversity for fluvial networks

    Get PDF
    Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks

    International entrepreneurship : exploring the logic and utility of individual experience through comparative reasoning approaches

    Get PDF
    In this paper, we suggest that individual experience and reasoning, as applied to new endeavors in internationalization, are concepts with high potential to advance conceptual and empirical research in international entrepreneurship (IE). Experience is known to be important in internationalization, but the logic or reasoning with which it is applied is insufficiently understood. Cognitive, comparison-based reasoning theories explain how individuals draw on experience to make sense of uncertain, novel, and complex situations. Drawing on two such theories, heuristics and analogical reasoning, we delineate the logic of experience and advance speculative propositions on its utility in the context of internationalization research

    Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference

    Get PDF
    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    Identifying the mechanisms underpinning recognition of structured sequences of action

    Get PDF
    © 2012 The Experimental Psychology SocietyWe present three experiments to identify the specific information sources that skilled participants use to make recognition judgements when presented with dynamic, structured stimuli. A group of less skilled participants acted as controls. In all experiments, participants were presented with filmed stimuli containing structured action sequences. In a subsequent recognition phase, participants were presented with new and previously seen stimuli and were required to make judgements as to whether or not each sequence had been presented earlier (or were edited versions of earlier sequences). In Experiment 1, skilled participants demonstrated superior sensitivity in recognition when viewing dynamic clips compared with static images and clips where the frames were presented in a nonsequential, randomized manner, implicating the importance of motion information when identifying familiar or unfamiliar sequences. In Experiment 2, we presented normal and mirror-reversed sequences in order to distort access to absolute motion information. Skilled participants demonstrated superior recognition sensitivity, but no significant differences were observed across viewing conditions, leading to the suggestion that skilled participants are more likely to extract relative rather than absolute motion when making such judgements. In Experiment 3, we manipulated relative motion information by occluding several display features for the duration of each film sequence. A significant decrement in performance was reported when centrally located features were occluded compared to those located in more peripheral positions. Findings indicate that skilled participants are particularly sensitive to relative motion information when attempting to identify familiarity in dynamic, visual displays involving interaction between numerous features

    Incorporating the geometry of dispersal and migration to understand spatial patterns of species distributions

    Get PDF
    Dispersal and migration can be important drivers of species distributions. Because the paths followed by individuals of many species are curvilinear, spatial statistical models based on rectilinear coordinates systems would fail to predict population connectivity or the ecological consequences of migration or species invasions. I propose that we view migration/dispersal as if organisms were moving along curvilinear geometrical objects called smooth manifolds. In that view, the curvilinear pathways become the ‘shortest realised paths’ arising from the necessity to minimise mortality risks and energy costs. One can then define curvilinear coordinate systems on such manifolds. I describe a procedure to incorporate manifolds and define appropriate coordinate systems, with focus on trajectories (1D manifolds), as parts of mechanistic ecological models. I show how a statistical method, known as ‘manifold learning’, enables one to define the manifold and the appropriate coordinate systems needed to calculate population connectivity or study the effects of migrations (e.g. in aquatic invertebrates, fish, insects and birds). This approach may help in the design of networks of protected areas, in studying the consequences of invasion, range expansions, or transfer of parasites/diseases. Overall, a geometrical view to animal movement gives a novel perspective to the understanding of the ecological role of dispersal and migration

    Rethinking a rare-species conservation strategy in an urban landscape: the case of the valley elderberry longhorn beetle

    Get PDF
    Reflecting the lack of critical information for most protected species, recovery plans for organisms listed as threatened or endangered under the U.S. Endangered Species Act tend to oversimplify habitat descriptions. Here we present our approach for improving the definition of habitat for rare and patchily distributed listed species. The valley elderberry longhorn beetle (Desmocerus californicus dimorphus) occurs in riparian and scrub communities in California's Central Valley. Habitat quality for the species currently is defined essentially exclusively in terms of presence and abundance of its larval host plant, elderberry (Sambucus spp.). Using detailed measures of physical and biological attributes at diverse sites occupied by the beetle, we characterized and defined habitat quality on the basis of not only host plants, but on an array of biotic and abiotic environmental characteristics. We identified four geomorphically distinct habitat associations: alluvial plain, narrow riparian corridor, upper riparian plain, and non-riparian scrub. Depending on habitat type, the environmental characteristics most strongly associated with beetle presence were host plant availability, topography and proximity to habitat edge. Increased local population size of beetles was associated with higher elderberry density and the presence of larger, more mature plants. Stochasticity in site occupancy over space and time confounds our ability to identify sites that are most able to contribute to long-term beetle survival, while underscoring the importance of unoccupied habitat to the beetle. Adopting a multivariate definition of habitat may facilitate more effective identification of locations critical to the recovery of the valley elderberry longhorn beetle, and prioritization of those management actions that can contribute effectively to meeting conservation goals for the species
    corecore