112 research outputs found

    Off-axis reflection zone plate for quantitative soft x-ray source characterization

    Get PDF
    A compact system for high-resolution spectroscopy and quantitative photon flux and brilliance measurements of pulsed soft x-ray sources is described. The calibrated system combines a novel elliptical off-axis reflection zone plate with charge-coupled device detection for simultaneous spectral and spatial measurements. Experiments on a water-window droplet-target laser-plasma source demonstrate lambda/Delta lambda greater than or equal to 1000 spectral resolution and absolute flux and brilliance measurements. (C) 1997 American Institute of Physics

    Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period

    Get PDF
    During glacial times, the North Atlantic region was affected by serious climate changes corresponding to Dansgaard-Oeschger cycles that were linked to dramatic shifts in sea temperature and moisture transfer to the continents. However, considerable efforts are still needed to understand the effects of these shifts on terrestrial environments. In this context, the Iberian Peninsula is particularly interesting because of its close proximity to the North Atlantic, although the Iberian interior lacks paleoenvironmental information so far because suitable archives are rare. Here we provide an accurate impression of the last glacial environmental developments in central Iberia based on comprehensive investigations using the upper Tagus loess record. A multi-proxy approach revealed that phases of loess formation during Marine Isotope Stage (MIS) 2 (and upper MIS 3) were linked to utmost aridity, coldness, and highest wind strengths in line with the most intense Greenland stadials also including Heinrich Events 3–1. Lack of loess deposition during the global last glacial maximum (LGM) suggests milder conditions, which agrees with less-cold sea surface temperatures (SST) off the Iberian margin. Our results demonstrate that geomorphological system behavior in central Iberia is highly sensitive to North Atlantic SST fluctuations, thus enabling us to reconstruct a detailed hydrological model in relation to marine–atmospheric circulation patterns

    A rotating condenser and off-axis zone plate monochromator for the TXM at the undulator U41 at BESSY II

    Get PDF
    Abstract The G . ottingen transmission X-ray microscope at the low emittance electron storage ring BESSY II uses the concept of dynamical aperture synthesis (Reynolds, DeVelis, Parrent, Thomson (Eds.), The New Physical Optics Notebook, SPIE, 1990, pp. 536-548) for the object illumination. The concept is well suited as a condenser, as it can match any required numerical aperture of the TXM objective. Furthermore, a novel off-axis transmission zone-plate monochromator is included, which can generate a monochromaticity of several thousand in the object illumination.

    Investigation of Thermal Stability Effects of Thick Hydrogenated Amorphous Silicon Precursor Layers for Liquid Phase Crystallized Silicon

    Get PDF
    The thermal stability of thick amp; 8776;4 amp; 8201; amp; 956;m plasma grown hydrogenated amorphous silicon a Si H layers on glass upon application of a rather rapid annealing step is investigated. Such films are of interest as precursor layers for laser liquid phase crystallized silicon solar cells. However, at least half day annealing at T amp; 8776;550 amp; 8201; C is considered to be necessary so far to reduce the hydrogen H content and thus avoid blistering and peeling during the crystallization process due to H. By varying the deposition conditions of a Si H, layers of rather different thermal stability are fabricated. Changes in the surface morphology of these a Si H layers are investigated using scanning electron microscopy and profilometry measurements. Hydrogen effusion, secondary ion mass spectrometry SIMS depth profiling, and Raman spectroscopy measurements are also carried out. In summary, amorphous silicon precursor layers are fabricated that can be heated within 30 amp; 8201;min to a temperature of 550 amp; 8201; C without peeling and major surface morphological changes. Successful laser liquid phase crystallization of such material is demonstrated. The physical nature of a Si H material stability instability upon application of rapid heating is studie

    HSPVdb—the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands

    Get PDF
    T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic “SNPs”. Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein–Barr virus cells

    Type II and VI collagen in nasal and articular cartilage and the effect of IL-1α on the distribution of these collagens

    Get PDF
    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion

    Molecules cooled below the Doppler limit

    Get PDF
    The ability to cool atoms below the Doppler limit -- the minimum temperature reachable by Doppler cooling -- has been essential to most experiments with quantum degenerate gases, optical lattices and atomic fountains, among many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A molecular magneto-optical trap has been demonstrated, where molecules approached the Doppler limit. However, the sub-Doppler temperatures required for most applications have not yet been reached. Here we cool molecules to 50 uK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study ultracold collisions and ultracold chemistry
    corecore