94 research outputs found

    Elevated intracranial pressure associated with hypermetabolism in isolated head trauma

    Full text link
    Both metabolic rate and protein catabolism are known to increase following severe head trauma, but the etiology of this hypermetabolism is unknown. To further investigate the problem, we studied the metabolism of 17 patients with indirect calorimetry who had severe craniocerebral trauma only and who required ICP monitoring for management. Patients were studied daily and immediately after ICP spikes greater than 20 mmHg, prior to treatment with hyperventilation, osmotic diuretics, or barbiturates. Oxygen consumption (VO 2 ) was correlated with ICP. Two groups of patients were identified. Group I patients were treated with hyperventilation and osmotic diuretics while Group II patients additionally received cerebral metabolic depressants. Group I had a significant correlation coefficent between VO 2 and ICP. Significant hypercatabolism early in the post trauma period was demonstrated by increased urine urea nitrogen. Our observations suggest that in patients with craniocerebral trauma, elevated ICP is associated with increased oxygen consumption, protein catabolism and systemic hypermetabolism. Cerebral metabolic depressants blunted increases in VO 2 which were seen with elevated ICP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41650/1/701_2005_Article_BF01402895.pd

    Enhanced Hsp70 Expression Protects against Acute Lung Injury by Modulating Apoptotic Pathways

    Get PDF
    The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury

    Extreme managers, extreme workplaces: capitalism, organizations and corporate psychopaths

    Get PDF
    This paper reports on in-depth, qualitative research carried out in England in 2013 among five organizational directors and two senior managers who had worked with other senior directors or managers who were Corporate Psychopaths, as measured by a management psychopathy measure. The Corporate Psychopaths reported on in this research displayed remarkable consistency in their approach to management to the extent that they could be called “text book examples” of managerial psychopathy. They were seen as being organizational stars and as deserving of performance awards by those above them, while the Corporate Psychopaths simultaneously subjected those below them to extreme forms of behavior, including bullying, intimidation and coercion and also engaged in extreme forms of mismanagement; such as very poor levels of personnel management, directionless leadership, miss-management of resources and outright fraud

    Phenytoin versus Leviteracetam for seizure prophylaxis after brain injury - A meta analysis

    Get PDF
    Background: Current standard therapy for seizure prophylaxis in Neuro-surgical patients involves the use of Phenytoin (PHY). However, a new drug Levetiracetam (LEV) is emerging as an alternate treatment choice. We aimed to conduct a meta-analysis to compare these two drugs in patients with brain injury.Methods: An electronic search was performed in using Pubmed, Embase, and CENTRAL. We included studies that compared the use of LEV vs. PHY for seizure prophylaxis for brain injured patients (Traumatic brain injury, intracranial hemorrhage, intracranial neoplasms, and craniotomy). Data of all eligible studies was extracted on to a standardized abstraction sheet. Data about baseline population characteristics, type of intervention, study design and outcome was extracted. Our primary outcome was seizures.Results: The literature search identified 2489 unduplicated papers. Of these 2456 papers were excluded by reading the abstracts and titles. Another 25 papers were excluded after reading their complete text. We selected 8 papers which comprised of 2 RCTs and 6 observational studies. The pooled estimate\u27s Odds Ratio 1.12 (95% CI = 0.34, 3.64) demonstrated no superiority of either drug at preventing the occurrence of early seizures. In a subset analysis of studies in which follow up for seizures lasted either 3 or 7 days, the effect estimate remained insignificant with an odds ratio of 0.96 (95% CI = 0.34, 2.76). Similarly, 2 trials reporting seizure incidence at 6 months also had insignificant pooled results while comparing drug efficacy. The pooled odds ratio was 0.96 (95% CI = 0.24, 3.79).Conclusions: Levetiracetam and Phenytoin demonstrate equal efficacy in seizure prevention after brain injury. However, very few randomized controlled trials (RCTs) on the subject were found. Further evidence through a high quality RCT is highly recommended

    Stabilizing Salt-Bridge Enhances Protein Thermostability by Reducing the Heat Capacity Change of Unfolding

    Get PDF
    Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔCp in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔCp of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔCp by 0.8–1.0 kJ mol−1 K−1. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔCp, leading to the up-shifting and broadening of the protein stability curves

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
    corecore