46 research outputs found

    Magnetic Exchange-Coupling in CoPt/Co Bilayer thin Films

    Full text link
    Thin film CoPt/Co bilayers have been prepared as a model system to investigate the relationship between microstructure and exchange coupling in two-phase hard/soft composite magnets. CoPt films, with a thickness of 25 nm, were sputter-deposited from a nearly equiatomic alloy target onto oxidized Si wafers. The films were subsequently annealed at 700 C and fully transformed from the FCC phase to the magnetically hard, ordered L1{sub 0} phase. The coercivity of the films increased rapidly with annealing time until it reached a plateau at approximately 9.5 kOe. Fully-ordered CoPt films were then used as substrates for deposition of Co layers, with thicknesses in the range of 2.8--225 nm, in order to produce the hard/soft composite bilayers. As predicted by theory, the magnetic coherency between the soft Co phase and the hard, ordered CoPt phase decreased as the thickness of the soft phase increased. This decrease in coupling was clearly seen in the magnetic hysteresis loops of the bilayers. At small thicknesses of Co (a few nanometers), the shape of the loop was one of a uniform material showing no indication of the presence of two phases with extremely different coercivities. At larger Co thicknesses, constricted loops, i.e., ones showing the presence of a mixture of two ferromagnetic phases of different hardnesses, were obtained. The magnetic exchange present in the bilayer samples was qualitatively analyzed using magnetic recoil curves and the dependence of exchange coupling on the soft phase dimension in the bilayer hard/soft composite magnet films is discussed

    Dengue epidemics and human mobility

    Get PDF
    In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine an already presented stochastic model for dengue with a simple representation of the daily motion of humans on a schematic city of 20x20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is described in terms of complex networks in which links connect different blocks and the link length distribution is in accordance with recent findings on human mobility. It is shown that human mobility can turn out to be the main driving force of the disease dispersal.Comment: 24 pages, 13 figure

    Self-similar Solutions to a Kinetic Model for Grain Growth

    Full text link
    We prove the existence of self-similar solutions to the Fradkov model for two-dimensional grain growth, which consists of an infinite number of nonlocally coupled transport equations for the number densities of grains with given area and number of neighbours (topological class). For the proof we introduce a finite maximal topological class and study an appropriate upwind-discretization of the time dependent problem in self-similar variables. We first show that the resulting finite dimensional differential system has nontrivial steady states. Afterwards we let the discretization parameter tend to zero and prove that the steady states converge to a compactly supported self-similar solution for a Fradkov model with finitely many equations. In a third step we let the maximal topology class tend to infinity and obtain self-similar solutions to the original system that decay exponentially. Finally, we use the upwind discretization to compute self-similar solutions numerically.Comment: 25 pages, several figure

    Effect of microstructural evolution on magnetic properties of Ni thin films

    Get PDF
    Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic

    Development of functional purpose snacks

    Get PDF
    The article provides information on the development of new functional snacks based on local traditional and non-traditional raw materials. The uniqueness of the composition of snacks is associated with the presence in the recipe of dry mare's and camel's milk, as well as fruit and vegetable purees, dry strains of lacto and bifidobacteria, fucoidan and other food ingredients with increased nutritional and biological value. Evaluation of the chemical composition of the nutritional and biological value of snacks indicates their targeted antioxidant, detoxifying and immunostimulating properties. Functional snacks are recommended for use by the general public, including climbers, pilots of civil and military aviation, athletes, as well as in emergencies and conditions that adversely affect human health

    The Importance of Socio-Economic Versus Environmental Risk Factors for Reported Dengue Cases in Java, Indonesia

    Get PDF
    Background: Dengue is a major mosquito-borne viral disease and an important public health problem. Identifying which factors are important determinants in the risk of dengue infection is critical in supporting and guiding preventive measures. In South-East Asia, half of all reported fatal infections are recorded in Indonesia, yet little is known about the epidemiology of dengue in this country. Methodology/Principal findings: Hospital-reported dengue cases in Banyumas regency, Central Java were examined to build Bayesian spatial and spatio-temporal models assessing the influence of climatic, demographic and socio-economic factors on the risk of dengue infection. A socio-economic factor linking employment type and economic status was the most influential on the risk of dengue infection in the Regency. Other factors such as access to healthcare facilities and night-time temperature were also found to be associated with higher risk of reported dengue infection but had limited explanatory power. Conclusions/Significance: Our data suggest that dengue infections are triggered by indoor transmission events linked to socio-economic factors (employment type, economic status). Preventive measures in this area should therefore target also specific environments such as schools and work areas to attempt and reduce dengue burden in this community. Although our analysis did not account for factors such as variations in immunity which need further investigation, this study can advise preventive measures in areas with similar patterns of reported dengue cases and environmen

    Granular L1

    No full text
    Ordered L10 FePt thin films are of interest as potential Heat Assisted Magnetic Recording media. In order to achieve the microstructure and magnetic properties to support recording at densities beyond 1 Tbit/in2, it is necessary to add segregants into the FePt films. In this work, the effects of a number of segregants, X, on the microstructure and magnetic properties of FePt:X (X  =  Ag, B, C, SiOx, TaOx) thin films, deposited by RF sputtering with various volume content (0–50%), various in-situ heating temperatures (450–600 °C), various Ar pressures (10–40 mtorr) and various sputtering powers (25–200 W) onto 1â€Čâ€Č Si substrates with a MgO texture (002) underlayer (20 nm), were investigated. It was observed that introducing segregants (B, C, SiOx, and TaOx) into the FePt reduced ordering and grain size of the FePt:X thin films. Ag was found to offset the reduction of ordering in the FePt:X films. The B, SiOx and TaOx promoted columnar growth whereas C promoted a secondary nucleation layer but produced the least reduction of ordering. By varying the volume content of the segregants, the grain size of the FePt:X can be controllably reduced throughout the 2.5–10 nm range. It was found that TaOx produced the best exchange decoupling, thermal durability, grain isolation and hindered grain coalescence as compared with the films deposited with B, C or SiOx. With the FePt:C:Ag films sputtered at 450 °C, a perpendicular coercivity measured at room temperature as high as 25 kOe was achieved; whereas with B, SiOx, and TaOx, perpendicular coercivities as high as 11 kOe were obtained. These FePt:X thin films with small grain size, columnar microstructure and high coercivity are believed to be favorable for application in Heat Assisted Magnetic Recording. The role of surface energies of FePt and the segregant in columnar growth of FePt grains is discussed
    corecore