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Abstract
Persistent homology (PH) is a method used in topological data analysis (TDA) to study
qualitative features of data that persist across multiple scales. It is robust to
perturbations of input data, independent of dimensions and coordinates, and
provides a compact representation of the qualitative features of the input. The
computation of PH is an open area with numerous important and fascinating
challenges. The field of PH computation is evolving rapidly, and new algorithms and
software implementations are being updated and released at a rapid pace. The
purposes of our article are to (1) introduce theory and computational methods for PH
to a broad range of computational scientists and (2) provide benchmarks of
state-of-the-art implementations for the computation of PH. We give a friendly
introduction to PH, navigate the pipeline for the computation of PH with an eye
towards applications, and use a range of synthetic and real-world data sets to
evaluate currently available open-source implementations for the computation of PH.
Based on our benchmarking, we indicate which algorithms and implementations are
best suited to different types of data sets. In an accompanying tutorial, we provide
guidelines for the computation of PH. We make publicly available all scripts that we
wrote for the tutorial, and we make available the processed version of the data sets
used in the benchmarking.

Keywords: persistent homology; topological data analysis; point-cloud data;
networks

1 Introduction
The amount of available data has increased dramatically in recent years, and this situa-
tion — which will only become more extreme — necessitates the development of inno-
vative and efficient data-processing methods. Making sense of the vast amount of data is
difficult: on one hand, the sheer size of the data poses challenges; on the other hand, the
complexity of the data, which includes situations in which data is noisy, high-dimensional,
and/or incomplete, is perhaps an even more significant challenge. The use of clustering
techniques and other ideas from areas such as computer science, machine learning, and
uncertainty quantification — along with mathematical and statistical models — are often
very useful for data analysis (see, e.g., [–] and many other references). However, recent
mathematical developments are shedding new light on such ‘traditional’ ideas, forging new
approaches of their own, and helping people to better decipher increasingly complicated
structure in data.
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Techniques from the relatively new subject of ‘topological data analysis’ (TDA) have pro-
vided a wealth of new insights in the study of data in an increasingly diverse set of applica-
tions — including sensor-network coverage [], proteins [–], -dimensional structure
of DNA [], development of cells [], stability of fullerene molecules [], robotics [–
], signals in images [, ], periodicity in time series [], cancer [–], phylogenetics
[–], natural images [], the spread of contagions [, ], self-similarity in geometry
[], materials science [–], financial networks [, ], diverse applications in neuro-
science [–], classification ofweighted networks [], collaboration networks [, ],
analysis of mobile phone data [], collective behavior in biology [], time-series output
of dynamical systems [], natural-language analysis [], and more. There are numerous
others, and new applications of TDA appear in journals and preprint servers increasingly
frequently. There are also interesting computational efforts, such as [].
TDA is a field that lies at the intersection of data analysis, algebraic topology, compu-

tational geometry, computer science, statistics, and other related areas. The main goal of
TDA is to use ideas and results from geometry and topology to develop tools for studying
qualitative features of data. To achieve this goal, one needs precise definitions of qualita-
tive features, tools to compute them in practice, and some guarantee about the robustness
of those features. One way to address all three points is a method in TDA called persistent
homology (PH). This method is appealing for applications because it is based on algebraic
topology, which gives a well-understood theoretical framework to study qualitative fea-
tures of data with complex structure, is computable via linear algebra, and is robust with
respect to small perturbations in input data.
Types of data sets that can be studied with PH include finite metric spaces, digital im-

ages, level sets of real-valued functions, and networks (see Section .). In the next two
paragraphs, we give some motivation for the main ideas of persistent homology by dis-
cussing two examples of such data sets.
Finite metric spaces are also called point-cloud data sets in the TDA literature. From a

topological point of view, finite metric spaces do not contain any interesting information.
One thus considers a thickening of a point cloud at different scales of resolution and then
analyzes the evolution of the resulting shape across the different resolution scales. The
qualitative features are given by topological invariants, and one can represent the variation
of such invariants across the different resolution scales in a compact way to summarize the
‘shape’ of the data.
As an illustration, consider the set of points in R

 that we show in Figure . Let ε, which
we interpret as a distance parameter, be a nonnegative real number (so ε =  gives the set
of points). For different values of ε, we construct a space Sε composed of vertices, edges,
triangles, and higher-dimensional polytopes according to the following rule: We include
an edge between two points i and j if and only if the Euclidean distance between them is
no larger than ε; we include a triangle if and only if all of its edges are in Sε ; we include
a tetrahedron if and only if all of its face triangles are in Sε ; and so on. For ε ≤ ε′, it then
follows that the space Sε is contained in the space Sε′ . This yields a nested sequence of
spaces, as we illustrate in Figure (a). Our construction of nested spaces gives an example
of a ‘filtered Vietoris–Rips complex,’ which we define and discuss in Section ..
By using homology, a tool in algebraic topology, one can measure several features of the

spaces Sε — including the numbers of components, holes, and voids (higher-dimensional
versions of holes). One can then represent the lifetime of such features using a finite collec-
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Figure 1 Example of persistent homology for a point cloud. (a) A finite set of points in R
2 (for ε = 0) and

a nested sequence of spaces obtained from it (from ε = 0 to ε = 2.1). (b) Barcode for the nested sequence of
spaces illustrated in (a). Solid lines represent the lifetime of components, and dashed lines represent the
lifetime of holes.

tion of intervals known as a ‘barcode.’ Roughly, the left endpoint of an interval represents
the birth of a feature, and its right endpoint represents the death of the same feature. In
Figure (b), we reproduce such intervals for the number of components (blue solid lines)
and the number of holes (violet dashed lines). In Figure (b), we observe a dashed line
that is significantly longer than the other dashed lines. This indicates that the data set has
a long-lived hole. By contrast, in this example one can potentially construe the shorter
dashed lines as noise. (However, note that while widespread, such an intepretation is not
correct in general; for applications in which one considers some short and medium-sized
intervals as features rather than noise, see [, ].) When a feature is still ‘alive’ at the
largest value of ε that we consider, the lifetime interval is an infinite interval, which we
indicate by putting an arrowhead at the right endpoint of the interval. In Figure (b), we
see that there is exactly one solid line that lives up to ε = .. One can use information
about shorter solid lines to extract information about how data is clustered in a similar
way as with linkage-clustering methods [].
One of the most challenging parts of using PH is statistical interpretation of results.

Froma statistical point of view, a barcode like the one in Figure (b) is an unknownquantity
that one is trying to estimate; one therefore needsmethods for quantitatively assessing the
quality of the barcodes that one obtains with computations. The challenge is twofold. On
one hand, there is a cultural obstacle: practitioners of TDA often have backgrounds in
pure topology and are not well-versed in statistical approaches to data analysis []. On
the other hand, the space of barcodes lacks geometric properties that would make it easy
to define basic concepts such as mean, median, and so on. Current research is focused
both on studying geometric properties of this space and on studying methods that map
this space to spaces that have better geometric properties for statistics. In Section ., we
give a brief overview of the challenges and current approaches for statistical interpretation
of barcodes. This is an active area of research and an important endeavor, as few statistical
tools are currently available for interpreting results in applications of PH.
We now discuss a second example related to digital images. (For an illustration, see Fig-

ure (a).) Digital images have a cubical structure, given by the pixels (for -dimensional
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Figure 2 Example of persistent homology for a gray-scale digital image. (a) A gray-scale image, (b) the
matrix of gray values, (c) the filtered cubical complex associated to the digital image, and (d) the barcode for
the nested sequence of spaces in panel (c). A solid line represents the lifetime of a component, and a dashed
line represents the lifetime of a hole.

digital images) or voxels (for -dimensional images). Therefore, one approach to study
digital images uses combinatorial structures called ‘cubical complexes.’ (For a different ap-
proach to the study of digital images, see Section ..) Roughly, cubical complexes are topo-
logical spaces built fromaunion of vertices, edges, squares, cubes, and higher-dimensional
hypercubes. An efficient way [] to build a cubical complex from a -dimensional digital
image consists of assigning a vertex to every pixel, then joining vertices corresponding to
adjacent pixels by an edge, and filling in the resulting squares. One proceeds in a similar
way for -dimensional images. One then labels every vertex with an integer that corre-
sponds to the gray value of the pixel, and one labels edges (respectively, squares) with
the maximum of the values of the adjacent vertices (respectively, edges). One can then
construct a nested sequence of cubical complexes C ⊂ C ⊂ · · · ⊂ C, where for each
i ∈ {, , . . . , }, the cubical complex Ci contains all vertices, edges, squares, and cubes
that are labeled by a number less than or equal to i. (See Figure (c) for an example.) Such
a sequence of cubical complexes is also called a ‘filtered cubical complex.’ Similar to the
previous example, one can use homology to measure several features of the spaces Ci (see
Figure (d)).
In the present article, we focus on persistent homology, but there are also othermethods

in TDA— including the Mapper algorithm [], Euler calculus (see [] for an introduc-
tion with an eye towards applications), cellular sheaves [, ], and many more. We refer
readers who wish to learn more about the foundations of TDA to the article [], which
discusses why topology and functoriality are essential for data analysis.We point to several
introductory papers, books, and two videos on PH at the end of Section .
The first algorithm for the computation of PH was introduced for computation over

F (the field with two elements) in [] and over general fields in []. Since then, sev-
eral algorithms and optimization techniques have been presented, and there are now var-
ious powerful implementations of PH [–]. Those wishing to try PH for computations
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may find it difficult to discern which implementations and algorithms are best suited for
a given task. The field of PH is evolving continually, and new software implementations
and updates are released at a rapid pace. Not all of them are well-documented, and (as is
well-known in the TDA community), the computation of PH for large data sets is compu-
tationally very expensive.
To our knowledge, there exists neither an overview of the various computational meth-

ods for PH nor a comprehensive benchmarking of the state-of-the-art implementations
for the computation of persistent homology. In the present article, we close this gap: we
introduce computation of PH to a general audience of appliedmathematicians and compu-
tational scientists, offer guidelines for the computation of PH, and test the existing open-
source published libraries for the computation of PH.
The rest of our paper is organized as follows. In Section , we discuss related work. We

then introduce homology in Section  and introduce PH in Section . We discuss the var-
ious steps of the pipeline for the computation of PH in Section , and we briefly examine
algorithms for generalized persistence in Section . In Section , we give an overview of
software libraries, discuss our benchmarking of a collection of them, and provide guide-
lines for which software or algorithm is better suited to which data set. (We provide spe-
cific guidelines for the computation of PH with the different libraries in the Tutorial in
Additional file  of the Supplementary Information (SI).) In Section , we discuss future
directions for the computation of PH.

2 Related work
In our work, we introduce PH to non-experts with an eye towards applications, and we
benchmark state-of-the-art libraries for the computation of PH. In this section, we discuss
related work for both of these points.
There are several excellent introductions to the theory of PH (see the references at the

end of Section .), but none of them emphasizes the actual computation of PH by pro-
viding specific guidelines for people who want to do computations. In the present paper,
we navigate the theory of PH with an eye towards applications, and we provide guidelines
for the computation of PH using the open-source libraries javaPlex, Perseus, Diony-
sus, DIPHA, Gudhi, and Ripser.We include a tutorial (see Additional file  of the SI) that
gives specific instructions for how to use the different functionalities that are implemented
in these libraries.Much of this information is scattered throughout numerous different pa-
pers, websites, and even source code of implementations, and we believe that it is benefi-
cial to the appliedmathematics community (especially peoplewho seek an entry point into
PH) to find all of this information in one place. The functionalities that we cover include
plots of barcodes and persistence diagrams and the computation of PHwith Vietoris–Rips
complexes, alpha complexes, Čech complexes, witness complexes, cubical complexes for
image data.We also discuss the computation of the bottleneck andWasserstein distances.
We thus believe that our paper closes a gap in introducing PH to people interested in
applications, while our tutorial complements existing tutorials (see, e.g. [–]).
We believe that there is a need for a thorough benchmarking of the state-of-the-art li-

braries. In our work, we use twelve different data sets to test and compare the libraries
javaPlex, Perseus, Dionysus, DIPHA, Gudhi, and Ripser. There are several bench-
markings in the PH literature; we are aware of the following ones: the benchmarking in
[] compares the implementations of standard and dual algorithms inDionysus; the one
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in [] compares the Morse-theoretic reduction algorithm with the standard algorithm;
the one in [] compares all of the data structures and algorithms implemented in PHAT;
the benchmarking in [] compares PHAT and its spin-off DIPHA; and the benchmarking
in C. Maria’s doctoral thesis [] is to our knowledge the only existing benchmarking that
compares packages from different authors. However,Maria compares only up to three dif-
ferent implementations at one time, and he used the package jPlex (which is no longer
maintained) instead of the javaPlex library (its successor). Additionally, the widely used
library Perseus (e.g., it was used in [, , , ]) does not appear in Maria’s bench-
marking.

3 Homology
Assume that one is given data that lies in a metric space, such as a subset of Euclidean
space with an inherited distance function. In many situations, one is not interested in the
precise geometry of these spaces, but instead seeks to understand some basic character-
istics, such as the number of components or the existence of holes and voids. Algebraic
topology captures these basic characteristics either by counting them or by associating
vector spaces or more sophisticated algebraic structures to them. Here we are interested
in homology, which associates one vector space Hi(X) to a space X for each natural num-
ber i ∈ {, , , . . . }. The dimension of H(X) counts the number of path components in X,
the dimension of H(X) is a count of the number of holes, and the dimension of H(X) is a
count of the number of voids. An important property of these algebraic structures is that
they are robust, as they do not change when the underlying space is transformed by bend-
ing, stretching, or other deformations. In technical terms, they are homotopy invariant.a

It can be very difficult to compute the homology of arbitrary topological spaces. We
thus approximate our spaces by combinatorial structures called ‘simplicial complexes,’ for
which homology can be easily computed algorithmically. Indeed, often one is not even
given the space X, but instead possesses only a discrete sample set S from which to build
a simplicial complex following one of the recipes described in Sections . and ..

3.1 Simplicial complexes and their homology
We begin by giving the definitions of simplicial complexes and of the maps between them.
Roughly, a simplicial complex is a space that is built from a union of points, edges, tri-
angles, tetrahedra, and higher-dimensional polytopes. We illustrate the main definitions
given in this section with the example in Figure . As we pointed out in Section , ‘cubical
complexes’ give another way to associate a combinatorial structure to a topological space.
In TDA, cubical complexes have been used primarily to study image data sets. One can
compute PH for a nested sequence of cubical complexes in a similar way as for simplicial
complexes, but the theory of PH for simplicial complexes is richer, and we therefore exam-
ine only simplicial homology and complexes in our discussions. See [] for a treatment
of cubical complexes and their homology.

Definition  A simplicial complexb is a collectionK of non-empty subsets of a setK such
that {v} ∈ K for all v ∈ K, and τ ⊂ σ and σ ∈ K guarantees that τ ∈ K . The elements of
K are called vertices of K , and the elements of K are called simplices. Additionally, we say
that a simplex has dimension p or is a p-simplex if it has a cardinality of p + . We use Kp

to denote the collection of p-simplices. The k-skeleton of K is the union of the sets Kp for
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Figure 3 A simple example. (a) A simplicial complex, (b) a map of simplicial complexes, and (c) a geometric
realization of the simplicial complex in (a).

all p ∈ {, , . . . ,k}. If τ and σ are simplices such that τ ⊂ σ , then we call τ a face of σ , and
we say that τ is a face of σ of codimension k′ if the dimensions of τ and σ differ by k′. The
dimension of K is defined as the maximum of the dimensions of its simplices. A map of
simplicial complexes, f : K → L, is a map f : K → L such that f (σ ) ∈ L for all σ ∈ K .

We give an example of a simplicial complex in Figure (a) and an example of a map of
simplicial complexes in Figure (b). Definition  is rather abstract, but one can always
interpret a finite simplicial complex K geometrically as a subset of RN for sufficiently
large N ; such a subset is called a ‘geometric realization,’ and it is unique up to a canon-
ical piecewise-linear homeomorphism. For example, the simplicial complex in Figure (a)
has a geometric realization given by the subset of R in Figure (c).
We now define homology for simplicial complexes. Let F denote the field with two

elements. Given a simplicial complex K , let Cp(K) denote the F-vector space with basis
given by the p-simplices of K . For any p ∈ {, , . . . }, we define the linear map (on the basis
elements)

dp : Cp(K)→ Cp–(K),

σ �→
∑

τ⊂σ ,τ∈Kp–

τ .

For p = , we define d to be the zeromap. In words, dp maps each p-simplex to its bound-
ary, the sum of its faces of codimension . Because the boundary of a boundary is always
empty, the linear maps dp have the property that composing any two consecutive maps
yields the zero map: for all p ∈ {, , , . . . }, we have dp ◦ dp+ = . Consequently, the im-
age of dp+ is contained in the kernel of dp, so we can take the quotient of kernel(dp) by
image(dp+). We can thus make the following definition.

Definition  For any p ∈ {, , , . . . }, the pth homology of a simplicial complex K is the
quotient vector space

Hp(K) := kernel(dp)/ image(dp+).
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Figure 4 Examples to illustrate simplicial homology. (a) Computation of simplicial homology for the
simplicial complex in Figure 3(a) and (b) induced map in 0th homology for the map of simplicial complexes in
Figure 3(b).

Its dimension

βp(K) := dim Hp(K) = dim kernel(dp) – dim image(dp+)

is called the pth Betti number of K . Elements in the image of dp+ are called p-boundaries,
and elements in the kernel of dp are called p-cycles.

Intuitively, the p-cycles that are not boundaries represent p-dimensional holes. There-
fore, the pth Betti number ‘counts’ the number of p-holes. Additionally, if K is a simplicial
complex of dimension n, then for all p > n, we have that Hp(K) = , as Kp is empty and
hence Cp(K) = . We therefore obtain the following sequence of vector spaces and linear
maps:


dn+−→ Cn(K)

dn−→ · · · d−→ C(K)
d−→ C(K)

d−→ .

We give an example of such a sequence in Figure (a), for which we also report the Betti
numbers.
One of the most important properties of simplicial homology is ‘functoriality.’ Any map

f : K → K ′ of simplicial complexes induces the following F-linear map:

f̃p : Cp(K)→ Cp
(
K ′),

∑

σ∈Kp

cσ σ �→
∑

σ∈Kp such that f (σ )∈K ′
p

cσ f (σ ) for any p ∈ {, , , . . . },
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where cσ ∈ F. Additionally, f̃p ◦ dp+ = d′
p+ ◦ f̃p+, and the map f̃p therefore induces the

following linear map between homology vector spaces:

fp : Hp(K)→ Hp
(
K ′),

[c] �→ [̃
fp(c)

]
.

(We give an example of such a map in Figure (b).) Consequently, to any map f : K → K ′

of simplicial complexes, we can assign a map fp : Hp(K)→ Hp(K ′) for any p ∈ {, , , . . . }.
This assignment has the important property that given a pair of composable maps of sim-
plicial complexes, f : K → K ′ and g : K ′ → K ′′, the map (g ◦ f )p : Hp(K)→ Hp(K ′′) is equal
to the composition of the maps induced by f and g . That is, (g ◦ f )p = gp ◦ fp. The fact that
a map of simplicial complexes induces a map on homology that is compatible with com-
position is called functoriality, and it is crucial for the definition of persistent homology
(see Section .).
When working with simplicial complexes, one can modify a simplicial complex by re-

moving or adding a pair of simplices (σ , τ ), where τ is a face of σ of codimension  and σ is
the only simplex that has τ as a face. The resulting simplicial complex has the same homol-
ogy as the onewith whichwe started. In Figure (a), we can remove the pair ({a,b, c}, {b, c})
and then the pair ({a,b}, {b}) without changing the Betti numbers. Such a move is called
an elementary simplicial collapse []. In Section .., we will see an application of this
for the computation of PH.
In this section, we have defined simplicial homology over the field F — i.e., ‘with co-

efficients in F.’ One can be more general and instead define simplicial homology with
coefficients in any field (or even in the integers). However, when  	= –, one needs to take
more care when defining the boundary maps dp to ensure that dp ◦ dp+ remains the zero
map. Consequently, the definition is more involved. For the purposes of the present pa-
per, it suffices to consider homology with coefficients in the field F. Indeed, we will see
in Section  that to obtain topological summaries in the form of barcodes, we need to
compute homology with coefficients in a field. Furthermore, as we summarize in Table 
(in Section ), most of the implementations for the computation of PH work with F.
We conclude this section with a warning: changing the coefficient field can affect the

Betti numbers. For example, if one computes the homology of the Klein bottle (see Sec-
tion ..) with coefficients in the field Fp with p elements, where p is a prime, then
β(K) =  for all primes p. However, β(K) =  and β(K) =  if p = , but β(K) =  and
β(K) =  for all other primes p. The fact that β(K) =  for p 	=  arises from the nonori-
entability of the Klein bottle. The treatment of different coefficient fields is beyond the
scope of our article, but interested readers can peruse [] for an introduction to homol-
ogy and [] for an overview of computational homology.

3.2 Building simplicial complexes
As we discussed in Section ., computing the homology of finite simplicial complexes
boils down to linear algebra. The same is not true for the homology of an arbitrary space
X, and one therefore tries to find simplicial complexes whose homology approximates the
homology of the space in an appropriate sense.
An important tool is the Čech (Č) complex. Let U be a cover of X — i.e., a collection of

subsets of X such that the union of the subsets is X. The k-simplices of the Čech complex
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are the non-empty intersections of k +  sets in the cover U . More precisely, we define the
nerve of a collection of sets as follows.

Definition  Let U = {Ui}i∈I be a non-empty collection of sets. The nerve of U is the
simplicial complex with set of vertices given by I and k-simplices given by {i, . . . , ik} if
and only if Ui ∩ · · · ∩ Uik 	= ∅.

If the cover of the sets is sufficiently ‘nice,’ then theNerveTheorem implies that the nerve
of the cover and the space X have the same homology [, ]. For example, suppose that
we have a finite set of points S in a metric space X. We then can define, for every ε > ,
the space Sε as the union

⋃
x∈S B(x, ε), where B(x, ε) denotes the closed ball with radius ε

centered at x. It follows that {B(x, ε) | x ∈ S} is a cover of Sε , and the nerve of this cover
is the Čech complex on S at scale ε. We denote this complex by Čε(S). If the space X is
Euclidean space, then the Nerve Theorem guarantees that the simplicial complex Čε(S)
recovers the homology of Sε .
From a computational point of view, the Čech complex is expensive because one has to

check for large numbers of intersections. Additionally, in theworst case, theČech complex
can have dimension |U |–, and it therefore can havemany simplices in dimensions higher
than the dimension of the underlying space. Ideally, it is desirable to construct simplicial
complexes that approximate the homology of a space but are easy to compute and have
‘few’ simplices, especially in high dimensions. This is a subject of ongoing research: In Sec-
tion ., we give an overview of state-of-the-art methods to associate complexes to point-
cloud data in a way that addresses one or both of these desiderata. See [, ] formore de-
tails on the Čech complex, and see [, ] for a precise statement of the Nerve Theorem.

4 Persistent homology
Assume that we are given experimental data in the form of a finite metric space S; there
are points or vectors that represent measurements along with some distance function
(e.g., given by a correlation or a measure of dissimilarity) on the set of points or vectors.
Whether or not the set S is a sample from some underlying topological space, it is useful
to think of it in those terms. Our goal is to recover the properties of such an underlying
space in a way that is robust to small perturbations in the data S. In a broad sense, this is
the subject of topological inference. (See [] for an overview.) If S is a subset of Euclidean
space, one can consider a ‘thickening’ Sε of S given by the union of balls of a certain fixed
radius ε around its points and then compute the Čech complex. One can thus try to com-
pute qualitative features of the data set S by constructing the Čech complex for a chosen
value ε and then computing its simplicial homology. The problem with this approach is
that there is a priori no clear choice for the value of the parameter ε. The key insight of
PH is the following: To extract qualitative information from data, one considers several (or
even all) possible values of the parameter ε. As the value of ε increases, simplices are added
to the complexes. Persistent homology then captures how the homology of the complexes
changes as the parameter value increases, and it detects which features ‘persist’ across
changes in the parameter value. We give an example of persistent homology in Figure .

4.1 Filtered complexes and homology
Let K be a finite simplicial complex, and let K ⊂ K ⊂ · · · ⊂ Kl = K be a finite sequence
of nested subcomplexes of K . The simplicial complex K with such a sequence of sub-
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Figure 5 Example of persistent homology for a finite filtered simplicial complex. (a) We start with a
finite filtered simplicial complex. (b) At each filtration step i, we draw as many vertices as the dimension of
(left column) H0(Ki) and (right column) H1(Ki). We label the vertices by basis elements, the existence of which
is guaranteed by the Fundamental Theorem of Persistent Homology, and we draw an edge between two
vertices to represent the maps fi,j , as explained in the main text. We thus obtain a well-defined collection of
disjoint half-open intervals called a ‘barcode.’ We interpret each interval in degree p as representing the
lifetime of a p-homology class across the filtration. (c) We rewrite the diagram in (b) in the conventional way.
We represent classes that are born but do not die at the final filtration step using arrows that start at the birth
of that feature and point to the right. (d) An alternative graphical way to represent barcodes (which gives
exactly the same information) is to use persistence diagrams, in which an interval [i, j) is represented by the

point (i, j) in the extended plane R
2
, where R =R∪ {∞}. Therefore, a persistence diagram is a finite multiset

of points in R
2
. We use squares to signify the classes that do not die at the final step of a filtration, and the size

of dots or squares is directly proportional to the number of points being represented. For technical reasons,
which we discuss briefly in Section 5.4, one also adds points on the diagonal to the persistence diagrams.
(Each of the points on the diagonal has infinite multiplicity.)

complexes is called a filtered simplicial complex. See Figure (a) for an example of filtered
simplicial complex. We can apply homology to each of the subcomplexes. For all p, the
inclusion maps Ki → Kj induce F-linear maps fi,j : Hp(Ki) → Hp(Kj) for all i, j ∈ {, . . . , l}
with i ≤ j. By functoriality (see Section .), it follows that

fk,j ◦ fi,k = fi,j for all i ≤ k ≤ j. ()

We therefore give the following definition.c
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Definition  Let K ⊂ K ⊂ · · · ⊂ Kl = K be a filtered simplicial complex. The pth persis-
tent homology of K is the pair

({
Hp(Ki)

}
≤i≤l, {fi,j}≤i≤j≤l

)
,

where for all i, j ∈ {, . . . , l} with i ≤ j, the linear maps fi,j : Hp(Ki) → Hp(Kj) are the maps
induced by the inclusion maps Ki → Kj.

The pth persistent homology of a filtered simplicial complex givesmore refined informa-
tion than just the homology of the single subcomplexes. We can visualize the information
given by the vector spacesHp(Ki) togetherwith the linearmaps fi,j by drawing the following
diagram: at filtration step i, we draw as many bullets as the dimension of the vector space
Hp(Ki). We then connect the bullets as follows: we draw an interval between bullet u at fil-
tration step i and bullet v at filtration step i+  if the generator of Hp(Ki) that corresponds
to u is sent to the generator of Hp(Ki+) that corresponds to v. If the generator correspond-
ing to a bullet u at filtration step i is sent to  by fi,i+, we draw an interval starting at u
and ending at i + . (See Figure (b) for an example.) Such a diagram clearly depends on
a choice of basis for the vector spaces Hp(Ki), and a poor choice can lead to complicated
and unreadable clutter. Fortunately, by the Fundamental Theorem of Persistent Homology
[], there is a choice of basis vectors of Hp(Ki) for each i ∈ {, . . . , l} such that one can con-
struct the diagram as a well-defined and unique collection of disjoint half-open intervals,
collectively called a barcode.d We give an example of a barcode in Figure (c). Note that
the Fundamental Theorem of PH, and hence the existence of a barcode, relies on the fact
that we are using homology with field coefficients. (See [] for more details.)
There is a useful interpretation of barcodes in terms of births and deaths of generators.

Considering the maps fi,j written in the basis given by the Fundamental Theorem of Per-
sistent Homology, we say that x ∈ Hp(Ki) (with x 	= ) is born in Hp(Ki) if it is not in the
image of fi–,i (i.e., f –i–,i(x) = ∅). For x ∈ Hp(Ki) (with x 	= ), we say that x dies in Hp(Kj) if
j > i is the smallest index for which fi,j(x) = . The lifetime of x is represented by the half-
open interval [i, j). If fi,j(x) 	=  for all j such that i < j ≤ l, we say that x lives forever, and its
lifetime is represented by the interval [i,∞).

Remark  Note that some references (e.g., []) introduce persistent homology by defin-
ing the birth and death of generators without using the existence of a choice of compatible
bases, as given by the Fundamental Theorem of Persistent Homology. The definition of
birth coincides with the definition that we have given, but the definition of death is dif-
ferent. One says that x ∈ Hp(Ki) (with x 	= ) dies in Hp(Kj) if j > i is the smallest index
for which either fi,j(x) =  or there exists y ∈ Hp(Ki′ ) with i′ < i such that fi′ ,j(y) = fi,j(x). In
words, this means that x and y merge at filtration step j, and the class that was born earlier
is the one that survives. In the literature, this is called the elder rule. We do not adopt this
definition, because the elder rule is not well-defined when two classes are born at the same
time, as there is no way to choose which class will survive. For example, in Figure , there
are two classes in H that are born at the same stage in K. These two classes merge in K,
but neither dies. The class that dies is [a] + [c].

There are numerous excellent introductions to PH, such as the books [, , , ]
and the papers [, –]. For a brief and friendly introduction to PH and some of
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Figure 6 PH pipeline.

its applications, see the video https://www.youtube.com/watch?v=hbnGWavag. For a
brief introduction to some of the ideas in TDA, see the video https://www.youtube.com/
watch?v=XfWibrhstw.

5 Computation of PH for data
We summarize the pipeline for the computation of PH from data in Figure . In the fol-
lowing subsections, we describe each step of this pipeline and state-of-the-art algorithms
for the computation of PH. The two features that make PH appealing for applications are
that it is computable via linear algebra and that it is stable with respect to perturbations
in the measurement of data. In Section ., we give a brief overview of stability results.

5.1 Data
As we mentioned in Section , types of data sets that one can study with PH include finite
metric spaces, digital images, and networks. We now give a brief overview of how one can
study these types of data sets using PH.

.. Networks
One can construe an undirected network as a -dimensional simplicial complex. If the
network is weighted, then filtering by increasing or decreasing weight yields a filtered -
dimensional simplicial complex. To obtain more refined information about the network,
it is desirable to construct higher-dimensional simplices. There are various methods to do
this. The simplest method, called aweight rank clique filtration (WRCF), consists of build-
ing a clique complex on each subnetwork. (See Section .. for the definition of ‘clique
complex.’) See [] for an application of this method. Another method to study networks
with PH consists of mapping the nodes of the network to points of a finite metric space.
There are several ways to compute distances between nodes of a network; the method
that we use in our benchmarking in Section  consists of computing a shortest path be-
tween nodes. For such a distance to be well-defined, note that one needs the network to
be connected (although conventionally one takes the distance between nodes in different
components to be infinity). There are many methods to associate an unfiltered simplicial
complex to both undirected and directed networks. See the book [] for an overview of
such methods, and see the paper [] for an overview of PH for networks.

.. Digital images
As we mentioned in Section , digital images have a natural cubical structure: -
dimensional digital images are made of pixels, and -dimensional images are made of
voxels. Therefore, to study digital images, cubical complexes are more appropriate than
simplicial complexes. Roughly, cubical complexes are spaces built from a union of vertices,
edges, squares, cubes, and so on. One can compute PH for cubical complexes in a similar
way as for simplicial complexes, andwewill therefore not discuss this further in this paper.
See [] for a treatment of computational homology with cubical complexes rather than
simplicial complexes and for a discussion of the relationship between simplicial and cubi-
cal homology. See [] for an efficient algorithm and data structure for the computation

https://www.youtube.com/watch?v=h0bnG1Wavag
https://www.youtube.com/watch?v=XfWibrh6stw
https://www.youtube.com/watch?v=XfWibrh6stw
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of PH for cubical data, and [] for an algorithm that computes PH for cubical data in an
approximate way. For an application of PH and cubical complexes to movies, see [].
Other approaches for studying digital images are also useful. In general, given a digital

image that consists of N pixels or voxels, one can consider this image as a point in a c×N-
dimensional space, with each coordinate storing a vector of length c representing the color
of a pixel or voxel. Defining an appropriate distance function on such a space allows one
to consider a collection of images (each of which has N pixels or voxels) as a finite metric
space. A version of this approach was used in [], in which the local structure of natural
images was studied by selecting ×  patches of pixels of the images.

.. Finite metric spaces
As we mentioned in the previous two subsections, both undirected networks and image
data can be construed as finite metric spaces. Therefore, methods to study finite metric
spaces with PH apply to the study of networks and image data sets.
In some applications, points of a metric space have associated ‘weights.’ For instance, in

the study of molecules, one can represent a molecule as a union of balls in Euclidean space
[, ]. For such data sets, one would therefore also consider a minimum filtration value
(see Section . for the description of such filtration values) at which the point enters the
filtration. In Table (g), we indicate which software libraries implement this feature.

5.2 Filtered simplicial complexes
In Section ., we introduced the Čech complex, a classical simplicial complex from alge-
braic topology. However, there are many other simplicial complexes that are better suited
for studying data from applications. We discuss them in this section.
To be a useful tool for the study of data, a simplicial complex has to satisfy some theoreti-

cal properties dictated by topological inference; roughly, if we build the simplicial complex
on a set of points sampled from a space, then the homology of the simplicial complex has
to approximate the homology of the space. For the Čech complex, these properties are
guaranteed by the Nerve Theorem. Some of the complexes that we discuss in this sub-
section are motivated by a ‘sparsification paradigm’: they approximate the PH of known
simplicial complexes but have fewer simplices than them. Others, like the Vietoris–Rips
complex, are appealing because they can be computed efficiently. In this subsection, we
also review reduction techniques, which are heuristics that reduce the size of complexes
without changing the PH. In Table , we summarize the simplicial complexes that we dis-
cuss in this subsection.

Table 1 We summarize several types of complexes that are used for PH

Complex K Size of K Theoretical guarantee

Čech 2O(N) Nerve theorem
Vietoris–Rips (VR) 2O(N) Approximates Čech complex
Alpha NO(�d/2�) (N points in R

d) Nerve theorem
Witness 2O(|L|) For curves and surfaces in Euclidean space
Graph-induced complex 2O(|Q|) Approximates VR complex
Sparsified Čech O(N) Approximates Čech complex
Sparsified VR O(N) Approximates VR complex

We indicate the theoretical guarantees and the worst-case sizes of the complexes as functions of the cardinality N of the
vertex set. For the witness complexes (see Section 5.2.4), L denotes the set of landmark points, while Q denotes the
subsample set for the graph-induced complex (see Section 5.2.5).
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For the rest of this subsection (X, d) denotes a metric space, and S is a subset of X, which
becomes ametric spacewith the inducedmetric. In applications, S is the collection ofmea-
surements together with a notion of distance, and we assume that S lies in the (unknown)
metric space X. Our goal is then to compute persistent homology for a sequence of nested
spaces Sε ,Sε , . . . ,Sεl , where each space gives a ‘thickening’ of S in X.

.. Vietoris–Rips complex
We have seen that one of the disadvantages of the Čech complex is that one has to check
for a large number of intersections. To circumvent this issue, one can instead consider the
Vietoris–Rips (VR) complex, which approximates the Čech complex. For a non-negative
real number ε, the Vietoris–Rips complex VRε(S) at scale ε is defined as

VRε(S) =
{
σ ⊆ S | d(x, y)≤ ε for all x, y ∈ σ

}
.

The sense in which the VR complex approximates the Čech complex is that, when S is a
subset of Euclidean space, we have Čε(S)⊆ VRε(S)⊆ Č√

ε(S). Deciding whether a subset
σ ⊆ S is in VRε(S) is equivalent to deciding if the maximal pairwise distance between any
two vertices in σ is at most ε. Therefore, one can construct the VR complex in two steps.
One first computes the ε-neighborhood graph of S. This is the graph whose vertices are all
points in S and whose edges are

{
(i, j) ∈ S × S | i 	= j and d(i, j)≤ ε

}
.

Second, one obtains the VR complex by computing the clique complex of the ε-
neighborhood graph. The clique complex of a graph is a simplicial complex that is de-
fined as follows: The subset {x, . . . ,xk} is a k-simplex if and only if every pair of vertices
in {x, . . . ,xk} is connected by an edge. Such a collection of vertices is called a clique. This
construction makes it very easy to compute the VR complex, because to construct the
clique complex one has only to check for pairwise distances — for this reason, clique
complexes are also called ‘lazy’ in the literature. Unfortunately, the VR complex has the
same worst-case complexity as the Čech complex. In the worst case, it can have up to
|S| –  simplices and dimension |S| – .
In applications, one therefore usually only computes the VR complex up to some dimen-

sion k � |S| – . In our benchmarking, we often choose k =  and k = .
The paper [] overviews different algorithms to perform both of the steps for the con-

struction of the VR complex, and it introduces fast algorithms to construct the clique
complex. For more details on the VR complex, see [, ]. For a proof of the approxima-
tion of the Čech complex by the VR complex, see []; see [] for a generalization of this
result.

.. The Delaunay complex
To avoid the computational problems of the Čech and VR complexes, we need a way to
limit the number of simplices in high dimensions. The Delaunay complex gives a geo-
metric tool to accomplish this task, and most of the new simplicial complexes that have
been introduced for the study of data are based on variations of the Delaunay complex.
The Delaunay complex and its dual, the Voronoi diagram, are central objects of study in
computational geometry because they have many useful properties.
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For the Delaunay complex, one usually considers X =R
d , so we also make this assump-

tion. We subdivide the space Rd into regions of points that are closest to any of the points
in S. More precisely, for any s ∈ S, we define

Vs =
{

x ∈R
d | d(x, s)≤ d

(
x, s′) for all s′ ∈ S

}
.

The collection of sets Vs is a cover for Rd that is called the Voronoi decomposition of Rd

with respect to S, and the nerve of this cover is called the Delaunay complex of S and
is denoted by Del(S;Rd). In general, the Delaunay complex does not have a geometric
realization in R

d . However, if the points S are ‘in general position’e then the Delaunay
complex has a geometric realization in R

d that gives a triangulation of the convex hull
of S. In this case, the Delaunay complex is also called the Delaunay triangulation.
The complexity of the Delaunay complex depends on the dimension d of the space. For

d ≤ , the best algorithms have complexity O(N log N), where N is the cardinality of S.
For d ≥ , they have complexity O(N�d/�). The construction of the Delaunay complex is
therefore costly in high dimensions, although there are efficient algorithms for the com-
putation of the Delaunay complex for d =  and d = . Developing efficient algorithms for
the construction of the Delaunay complex in higher dimensions is a subject of ongoing re-
search. See [] for a discussion of progress in this direction, and see [] for more details
on the Delaunay complex and the Voronoi diagram.

.. Alpha complex
We continue to assume that S is a finite set of points in R

d . Using the Voronoi decompo-
sition, one can define a simplicial complex that is similar to the Čech complex, but which
has the desired property that (if the points S are in general position) its dimension is at
most that of the space. Let ε > , and let Sε denote the union

⋃
s∈S B(s, ε). For every s ∈ S,

consider the intersection Vs ∩ B(s, ε). The collection of these sets forms a cover of Sε , and
the nerve complex of this cover is called the alpha (α) complex of S at scale ε and is de-
noted by Aε(S). The Nerve Theorem applies, and it therefore follows that Aε(S) has the
same homology as Sε .
Furthermore,A∞(S) is the Delaunay complex; and for ε <∞, the alpha complex is a sub-

complex of the Delaunay complex. The alpha complex was introduced for points in the
plane in [], in -dimensional Euclidean space in [], and for Euclidean spaces of ar-
bitrary dimension in []. For points in the plane, there is a well-known speed-up for the
alpha complex that uses a duality between -dimensional and -dimensional persistence
for alpha complexes []. (See [] for the algorithm, and see [] for an implementa-
tion.)

.. Witness complexes
Witness complexes are very useful for analyzing large data sets, because theymake it possi-
ble to construct a simplicial complex on a significantly smaller subset L ⊆ S of points that
are called ‘landmark’ points. Meanwhile, because one uses information about all points
in S to construct the simplicial complex, the points in S are called ‘witnesses.’ Witness
complexes can be construed as a ‘weak version’ of Delaunay complexes. (See the charac-
terization of the Delaunay complex in [].)
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Definition  Let (S, d) be a metric space, and let L ⊆ S be a finite subset. Suppose that σ

is a non-empty subset of L. We then say that s ∈ S is a weak witness for σ with respect to L
if and only if d(s,a)≤ d(s,b) for all a ∈ σ and for all b ∈ L \σ . The weak Delaunay complex
Delw(L;S) of S with respect to L has vertex set given by the points in L, and a subset σ of L
is in Delw(L;S) if and only if it has a weak witness in S.

To obtain nested complexes, one can extend the definition of witnesses to ε-witnesses.

Definition  Apoint s ∈ S is aweak ε-witness for σ with respect to L if and only if d(s,a)≤
d(s,b) + ε for all a ∈ σ and for all b ∈ L \ σ .

Nowwe can define theweak Delaunay complex Delw(L;S, ε) at scale ε to be the simplicial
complex with vertex set L, and such that a subset σ ⊆ L is in Delw(L;S, ε) if and only if it
has a weak ε-witness in S. By considering different values for the parameter ε, we thereby
obtain nested simplicial complexes. The weak Delaunay complex is also called the ‘weak
witness complex’ or just the ‘witness complex’ in the literature.
There is a modification of the witness complex called the lazy witness complex

Delw
lazy(L;X, ε). It is a clique complex, and it can therefore be computed more effi-

ciently than the witness complex. The lazy witness complex has the same -skeleton
as Delw(L;X, ε), and one adds a simplex σ to Delw

lazy(L;X, ε) whenever its edges are in
Delw

lazy(L;X, ε). Another type of modification of the witness complex yields parametrized
witness complexes. Let ν = , , . . . and for all s ∈ S define mν(s) to be the distance to the
νth closest landmark point. Furthermore, define m(s) =  for all s ∈ S. Let Wν(L;S, ε) be
the simplicial complex whose vertex set is L and such that a -simplex σ = {x,x} is in
Wν(L;X, ε) if and only if there exists s in S for which

max
{
d(x, s), d(x, s)

} ≤ mν(s) + ε.

A simplex σ is in Wν(L;X, ε) if and only if all of its edges belong to Wν(L;X, ε). For ν = ,
note that W(L;X, ε) = Delw

lazy(L;X, ε). For ν = , we have that W(L;X, ε) approximates
the VR complex VR(L; ε). That is,

W(L;X, ε)⊆ VR(L; ε)⊆W(L;X, ε).

Note that parametrized witness complexes are often called ‘lazy witness complexes’ in the
literature, because they are clique complexes.
The weak Delaunay complex was introduced in [], and parametrized witness com-

plexes were introduced in []. Witness complexes can be rather useful for applications.
Because their complexity depends on the number of landmark points, one can reduce the
complexity by computing simplicial complexes using a smaller number of vertices. How-
ever, there are theoretical guarantees for the witness complex only when S is the metric
space associated to a low-dimensional Euclidean submanifold. It has been shown that wit-
ness complexes can be used to recover the topology of curves and surfaces in Euclidean
space [, ], but they can fail to recover topology for submanifolds of Euclidean space
of three or more dimensions []. Consequently, there have been studies of simplicial
complexes that are similar to the witness complexes but with better theoretical guaran-
tees (see Section ..).
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.. Additional complexes
Manymore complexes have been introduced for the fast computation of PH for large data
sets. These include the graph-induced complex [], which is a simplicial complex con-
structed on a subsample Q, and has better theoretical guarantees than the witness com-
plex (see [] for the companion software); an approximation of the VR complex that has
a worst-case size that is linear in the number of data points []; an approximation of the
Čech complex [] whose worst-case size also scales linearly in the data; and an approxi-
mation of the VR complex via simplicial collapses [].We do not discuss such complexes
in detail, because thus far (at the time of writing) none of them have been implemented in
publicly-available libraries for the computation of PH. (See Table  in Section  for infor-
mation about which complexes have been implemented.)

.. Reduction techniques
Thus far, we have discussed techniques to build simplicial complexes with possibly ‘few’
simplices. One can also take an alternative approach to speed up the computation of PH.
For example, one can use a heuristic (i.e., a method without theoretical guarantees on the
speed-up) to reduce the size of a filtered complex while leaving the PH unchanged.
For simplicial complexes, one such method is based on discrete Morse theory [],

which was adapted to filtrations of simplicial complexes in []. The basic idea of the al-
gorithm developed in [] is that one can compute a partial matching of the simplices
in a filtered simplicial complex so that (i) pairs occur only between simplices that enter
the filtration at the same step, (ii) unpaired simplices determine the homology, and (iii)
one can remove paired simplices from the filtered complex without altering the PH. Such
deletions are examples of the elementary simplicial collapses that we mentioned in Sec-
tion .. Unfortunately, the problem of finding an optimal partial matching was shown to
be NP complete [], and one thus relies on heuristics to find partial matchings to reduce
the size of the complex.
One particular family of elementary collapses, called strong collapses, was introduced

in []. Strong collapses preserve cycles of shortest length in the representative class of
a generator of a hole []; this feature makes strong collapses useful for finding holes in
networks []. A distributed version of the algorithm proposed in [] was presented in
[] and adapted for the computation of PH in [].
Amethod for the reduction of the size of a complex for clique complexes, such as the VR

complex, was proposed in [] and is called the tidy-set method. Using maximal cliques,
this method extracts a minimal representation of the graph that determines the clique
complex. Although the tidy-set method cannot be extended to filtered complexes, it can
be used for the computation of zigzag PH (see Section ) []. The tidy-set method is a
heuristic, because it does not give a guarantee to minimize the size of the output complex.

5.3 From a filtered simplicial complex to barcodes
To compute the PH of a filtered simplicial complex K and obtain a barcode like the one
illustrated in Figure (c), we need to associate to it a matrix — the so-called boundary
matrix — that stores information about the faces of every simplex. To do this, we place a
total ordering on the simplices of the complex that is compatible with the filtration in the
following sense:

• a face of a simplex precedes the simplex;
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Algorithm The standard algorithm for the reduction of the boundarymatrix to barcodes
for j =  to n do

while there exists i < j with low(i) = low(j) do
add column i to column j

end while
end for

• a simplex in the ith complex Ki precedes simplices in Kj for j > i, which are not in Ki.
Let n denote the total number of simplices in the complex, and let σ, . . . ,σn denote the
simplices with respect to this ordering.We construct a squarematrix δ of dimension n×n
by storing a  in δ(i, j) if the simplex σi is a face of simplex σj of codimension ; otherwise,
we store a  in δ(i, j).
Once one has constructed the boundary matrix, one has to reduce it using Gaussian

elimination.f In the following subsections, we discuss several algorithms for reducing the
boundary matrix.

.. Standard algorithm
The so-called standard algorithm for the computation of PH was introduced for
the field F in [] and for general fields in []. For every j ∈ {, . . . ,n}, we define low(j) to
be the largest index value i such that δ(i, j) is different from .g If column j only contains 
entries, then the value of low(j) is undefined. We say that the boundary matrix is reduced
if the map low is injective on its domain of definition. In Algorithm , we illustrate the
standard algorithm for reducing the boundary matrix. Because this algorithm operates on
columns of the matrix from left to right, it is also sometimes called the ‘column algorithm.’
In the worst case, the complexity of the standard algorithm is cubic in the number of
simplices.

.. Reading off the intervals
Once the boundary matrix is reduced, one can read off the intervals of the barcode by
pairing the simplices in the following way:

• If low(j) = i, then the simplex σj is paired with σi, and the entrance of σi in the
filtration causes the birth of a feature that dies with the entrance of σj.

• If low(j) is undefined, then the entrance of the simplex σj in the filtration causes the
birth of a feature. It there exists k such that low(k) = j, then σj is paired with the
simplex σk , whose entrance in the filtration causes the death of the feature. If no such
k exists, then σj is unpaired.

A pair (σi,σj) gives the half-open interval [dg(σi),dg(σj)) in the barcode, where for a sim-
plex σ ∈ K we define dg(σ ) to be the smallest number l such that σ ∈ Kl . An unpaired
simplex σk gives the infinite interval [dg(σk),∞). We give an example of PH computation
in Figure .

.. Other algorithms
After the introduction of the standard algorithm, several new algorithms were developed.
Each of these algorithms gives the same output for the computation of PH, so we only give
a brief overview and references to these algorithms, as one does not need to know them
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Figure 7 Example of PH computation with the standard algorithm (see Algorithm 1).

to compute PH with one of the publicly-available software packages. In Section ., we
indicate which implementation of these libraries is best suited to which data set.
As we mentioned in Section .., in the worst case, the standard algorithm has cubic

complexity in the number of simplices. This bound is sharp, as Morozov gave an example
of a complex with cubic complexity in []. Note that in cases such as when matrices are
sparse, complexity is less than cubic.Milosavljević, Morozov, and Skraba [] introduced
an algorithm for the reduction of the boundary matrix in O(nω), where ω is the matrix-
multiplication coefficient (i.e.,O(nω) is the complexity of the multiplication of two square
matrices of size n). At present, the best bound for ω is . []. Many other algorithms
have been proposed for the reduction of the boundary matrix. These algorithms give a
heuristic speed-up for many data sets and complexes (see the benchmarkings in the forth-
coming references), but they still have cubic complexity in the number of simplices. Se-
quential algorithms include the twist algorithm [] and the dual algorithm

[, ]. (Note that the dual algorithm is known to give a speed-up when one computes
PH with the VR complex, but not necessarily for other types of complexes (see also the
results of our benchmarking for the vertebra data set in Additional file  of the SI).) Paral-
lel algorithms in a shared setting include the spectral-sequence algorithm (see
Section VII. of []) and the chunk algorithm []; parallel algorithms in a dis-
tributed setting include the distributed algorithm []. The multifield al-

gorithm is a sequential algorithm that allows the simultaneous computation of PH over
several fields [].
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5.4 Statistical interpretation of topological summaries
Once one has obtained barcodes, one needs to interpret the results of computations. In
applications, one often wants to compare the output of a computation for a certain data
set with the output for a null model. Alternatively, one may be studying data sets from the
output of a generative model (e.g., many realizations from a model of random networks),
and it is then necessary to average results over multiple realizations. In the first instance,
one needs both a way to compare the two different outputs and a way to evaluate the
significance of the result for the original data set. In the second case, one needs a way to
calculate appropriate averages (e.g., summary statistics) of the result of the computations.
From a statistical perspective, one can interpret a barcode as an unknown quantity that

one tries to estimate by computing PH. If one wants to use PH in applications, one thus
needs a reliable way to apply statistical methods to the output of the computation of PH.
To our knowledge, statistical methods for PH were addressed for the first time in the pa-
per []. Roughly speaking, there are three current approaches to the problem of sta-
tistical analysis of barcodes. In the first approach, researchers study topological proper-
ties of random simplicial complexes (see, e.g., [, ]) and the review papers [, ].
One can view random simplicial complexes as null models to compare with empirical data
when studying PH. In the second approach, one studies properties of ametric space whose
points are persistence diagrams. In the third approach, one studies ‘features’ of persistence
diagrams. We will provide a bit more detail about the second and third approaches.
In the second approach, one considers an appropriately defined ‘space of persistence

diagrams,’ defines a distance function on it, studies geometric properties of this space,
and does standard statistical calculations (means, medians, statistical tests, and so on).
Recall that a persistence diagram (see Figure  for an example) is a multiset of points in
R
 and that it gives the same information as a barcode. We now give the following precise

definition of a persistence diagram.

Definition  A persistence diagram is a multiset that is the union of a finite multiset of
points in R

 with the multiset of points on the diagonal 
 = {(x, y) ∈ R
 | x = y}, where

each point on the diagonal has infinite multiplicity.

In this definition, we include all of the points on the diagonal in R
 with infinite mul-

tiplicity for technical reasons. Roughly, it is desirable to be able to compare persistence
diagrams by studying bijections between their elements, and persistence diagrams must
thus be sets with the same cardinality.
Given two persistence diagrams X and Y , we consider the following general definition

of distance between X and Y .

Definition  Let p ∈ [,∞]. The pth Wasserstein distance between X and Y is defined as

Wp[d](X,Y ) := inf
φ:X→Y

[∑

x∈X

d
[
x,φ(x)

]p
]/p

for p ∈ [,∞) and as

W∞[d](X,Y ) := inf
φ:X→Y

sup
x∈X

d
[
x,φ(x)

]

for p =∞, where d is a metric on R
 and φ ranges over all bijections from X to Y .
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Usually, one takes d = Lq for q ∈ [,∞]. One of the most commonly employed distance
functions is the bottleneck distance W∞[L∞].
The development of statistical analysis on the space of persistence diagrams is an area

of ongoing research, and presently there are few tools that can be used in applications. See
[–] for research in this direction. Until recently, the library Dionysus [] was the
only library to implement computation of the bottleneck and Wasserstein distances (for
d = L∞); the library hera [] implements a new algorithm [] for the computation of
the bottleneck andWasserstein distances that significantly outperforms the implementa-
tion in Dionysus. The library TDA Package [] (see [] for the accompanying tu-
torial) implements the computation of confidence sets for persistence diagrams that was
developed in [], distance functions that are robust to noise and outliers [], andmany
more tools for interpreting barcodes.
The third approach for the development of statistical tools for PH consists of mapping

the space of persistence diagrams to spaces (e.g., Banach spaces) that are amenable to
statistical analysis and machine-learning techniques. Such methods include persistence
landscapes [], using the space of algebraic functions [], persistence images [],
and kernelization techniques [–]. See the papers [, ] for applications of persis-
tence landscapes. The package Persistence Landscape Toolbox [] (see [] for the
accompanying tutorial) implements the computation of persistence landscapes, as well as
many statistical tools that one can apply to persistence landscapes, such asmean, ANOVA,
hypothesis tests, and many more.

5.5 Stability
Aswementioned in Section , PH is useful for applications because it is stable with respect
to small perturbations in the input data.
The first stability theorem for PH, proven in [], asserts that, under favorable condi-

tions, step () in the pipeline in Figure  is -Lipschitz with respect to suitable distance
functions on filtered complexes and the bottleneck distance for barcodes (see Section .).
This result was generalized in the papers [–]. Stability for PH is an active area of
research; for an overview of stability results, their history and recent developments, see
[], Chapter .

6 Excursus: generalized persistence
One can use the algorithms that we described in Section  to compute PH when one has
a sequence of complexes with inclusion maps that are all going in the same direction, as
in the following diagram:

· · · → Ki– → Ki → Ki+ → ·· · .

An algorithm, called the zigzag algorithm, for the computation of PH for inclusion
maps that do not all go in the same direction, as, e.g., in the diagram

· · · → Ki– → Ki ← Ki+ → ·· ·

was introduced in []. In the more general setting in whichmaps are not inclusions, one
can still compute PH using the simplicial map algorithm [].
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One may also wish to vary two or more parameters instead of one. This yields multi-
filtered simplicial complexes, as, e.g., in the following diagram:

...
...

...
↓ ↓ ↓

· · · → Kj+,i– → Kj+,i → Kj+,i+ → ·· ·
↓ ↓ ↓

· · · → Kj,i– → Kj,i → Kj,i+ → ·· ·
↓ ↓ ↓

· · · → Kj–,i– → Kj–,i → Kj–,i+ → ·· ·
↓ ↓ ↓
...

...
...

In this case, one speaks of multi-parameter persistent homology. Unfortunately, the Fun-
damental Theorem of Persistent Homology is no longer valid if one filters with more
than one parameter, and there is no such thing as a ‘generalized interval.’ The topic of
multi-parameter persistence is under active research, and several approaches are being
studied to extract topological information from multi-filtered simplicial complexes. See
[, ] for the theory of multi-parameter persistent homology, and see [] (and []
for its companion paper) for upcoming software for the visualization of invariants for -
parameter persistent homology.

7 Software
There are several publicly-available implementations for the computation of PH. We give
an overview of the libraries with accompanying peer-reviewed publication and summarize
their properties in Table .
The software package javaPlex [], which was developed by the computational topol-

ogy group at Stanford University, is based on the Plex library [], which to our knowl-
edge is the first piece of software to implement the computation of PH. Perseus []
was developed to implementMorse-theoretic reductions [] (see Section ..). jHoles
[] is a Java library for computing the weight rank clique filtration for weighted undi-
rected networks []. Dionysus [] is the first software package to implement the dual
algorithm [, ]. PHAT [] is a library that implements several algorithms and
data structures for the fast computation of barcodes, takes a boundary matrix as input,
and is the first software to implement a matrix-reduction algorithm that can be executed
in parallel. DIPHA [], a spin-off of PHAT, implements a distributed computation of
the matrix-reduction algorithm. Gudhi [] implements new data structures for simpli-
cial complexes and the boundary matrix. It also implements the multi-field algo-

rithm, which allows simultaneous computation of PH over several fields []. This li-
brary is currently under intense development, and a Python interface was just released in
the most recent version of the library (namely, Version .., whereas the version that we
study in our tests is Version ..). The library ripser [], the most recently developed
software of the set that we examine, uses several optimizations and shortcuts to speed
up the computation of PH with the VR complex. This library does not have an accom-
panying peer-reviewed publication. However, because it is currently the best-performing
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(both in terms of memory usage and in terms of wall-time secondsh) library for the com-
putation of PH with the VR complex, we include it in our study. The library SimpPers
[] implements the simplicial map algorithm. Libraries that implement tech-
niques for the statistical interpretation of barcodes include the TDA Package [] and
the Persistence Landscape Toolbox []. (See Section . for additional libraries for
the interpretation of barcodes.) RIVET, a package for visualizing -parameter persistent
homology, is slated to be released soon [].We summarize the properties of the libraries
for the computation of PH that we mentioned in this paragraph in Table , and we discuss
the performance for a selection of them in Section .. and in Additional file  of the SI.
For a list of programs, see https://github.com/n-otter/PH-roadmap.

7.1 Benchmarking
We benchmark a subset of the currently available open-source libraries with peer-
reviewed publication for the computation of PH. To our knowledge, the published open-
source libraries are jHoles, javaPlex, Perseus, Dionysus, PHAT, DIPHA, SimpPers,
and Gudhi. To these, we add the library ripser, which is currently the best-performing
library to compute PH with the VR complex. To study the performance of the packages,
we restrict our attention to the algorithms that are implemented by the largest number
of libraries. These are the VR complex and the standard and dual algorithms for the re-
duction of the boundary matrix. PHAT only takes a boundary matrix as input, so it is not
possible to conduct a direct comparison of it with the other implementations. However,
the fast data structures and algorithms implemented in PHAT are also implemented in its
spin-off software DIPHA, which we include in the benchmarking. The software jHoles
computes PH using the WRCF for weighted undirected networks, and SimpPers takes a
map of simplicial complexes as input, so these two libraries cannot be compared directly
to the other libraries. In Additional file  of the SI, we report benchmarking of some addi-
tional features that are implemented by some of the six libraries (i.e., javaPlex, Perseus,
Dionysus, DIPHA, Gudhi, and Ripser) that we test. Specifically, we report results for
the computation of PH with cubical complexes for image data sets and the computation
of PH with witness, alpha, and Čech complexes.
We study the software packages javaPlex, Perseus, Dionysus, DIPHA, Gudhi, and

Ripser using both synthetic and real-world data from three different perspectives:
. Performance measured in CPU seconds and wall-time (i.e., elapsed time) seconds.
. Memory required by the process.
. Maximum size of simplicial complex allowed by the software.

.. Data sets
In this subsection, we describe the data sets that we use for our benchmarking. We use
data sets from a variety of different mathematical and scientific areas and applications. In
each case, when possible, we use data sets that have already been studied using PH. Our
list of data sets is far from complete; we view this list as an initial step towards building a
comprehensive collection of benchmarking data sets for PH.
Data sets ()–() are synthetic; they arise from topology (), stochastic topology (),

dynamical systems (), and from an area at the intersection of network theory and fractal
geometry (). (As we discuss below, data set () was used originally to study connection
patterns in the cerebral cortex.) Data sets ()–() are from empirical experiments and

https://github.com/n-otter/PH-roadmap
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Figure 8 Two well-known examples. (a) Plot of
the image of the figure-8 immersion of the Klein
bottle and (b) the reconstruction of the Stanford
Dragon (retrieved from [164]).

measurements: they arise from phylogenetics ()–(), image analysis (), genomics (),
neuroscience (), medical imaging (), political science (), and scientometrics ().
In each case, these data sets are of one of the following three types: point clouds,

weighted undirected networks, and gray-scale digital images. To obtain a point cloud from
a real-world weighted undirected network, we compute shortest paths using the inverse
of the nonzero weights of edges as distances between nodes (except for the US Congress
networks and the human genome network; see below). For the synthetic networks, the
values assigned to edges are interpreted as distances between nodes, and we therefore use
these values to compute shortest paths. We make all processed versions of the data sets
that we use in the benchmarking available at https://github.com/n-otter/PH-roadmap/
tree/master/data_sets. We provide the scripts that we used to produce the synthetic data
sets at https://github.com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets
_scripts.
We now describe all data sets in detail:

() Klein bottle. The Klein bottle is a one-sided nonorientable surface (see Figure ).
We linearly sample points from the Klein bottle using its ‘figure-’ immersion in R



and size sample of  points. We denote this data set by Klein. Note that the
image of the immersion of the Klein bottle does not have the same homotopy type
as the original Klein bottle, but it does have the same singular homologyi with
coefficients in F. We have H(B) = F, H(B) = F ⊕ F, and H(B) = F, where B
denotes the Klein bottle and Hi(B) is the ith singular homology group with
coefficients in F.

() Random VR complexes (uniform distribution) []. The parameters for this
model are positive integers N and d; the random VR complex for parameters N
and d is the VR complex VRε(X), where X is a set of N points sampled from R

d .
(Equivalently, the random VR complex is the clique complex on the random
geometric graph G(N , ε) [].) We sample N points uniformly at random from
[, ]d . We choose (N ,d) = (, ) and we denote this data set by random. The
homology of random VR complexes was studied in [].

() Vicsek biological aggregation model. This model was first introduced in [] and
was studied using PH in []. We implement the model in the form in which it
appears in []. The model describes the motion of a collection of particles that
interact in a square with periodic boundary conditions. The parameters for the
model are the length l of the side of the square, the initial angle θ, the (constant)
absolute value v for the velocity, the number N of particles, a noise parameter η,
and the number T of time steps. The output of the model is a point cloud in
-dimensional Euclidean space in which each point is specified by its position in
the -dimensional box and its velocity angle (‘heading’). We run three simulations
of the model using the parameter values from []. For each simulation, we choose

https://github.com/n-otter/PH-roadmap/tree/master/data_sets
https://github.com/n-otter/PH-roadmap/tree/master/data_sets
https://github.com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts
https://github.com/n-otter/PH-roadmap/tree/master/matlab/synthetic_data_sets_scripts
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two point clouds that correspond to two different time frames. See [] for further
details. We denote this data set by Vicsek.

() Fractal networks. These are self-similar networks introduced in [] to investigate
whether connection patterns of the cerebral cortex are arranged in self-similar
patterns. The parameters for this model are natural numbers b, k, and n. To
generate a fractal network, one starts with a fully-connected network with b

nodes. Two copies of this network are connected to each other so that the
‘connection density’ between them is k–, where the connection density is the
number of edges between the two copies divided by the number of total possible
edges between them. Two copies of the resulting network are connected with
connection density k–. One repeats this type of connection process until the
network has size n, but with a decrease in the connection density by a factor of /k
at each step.

We define distances between nodes in two different ways: () uniformly at
random, and () with linear weight-degree correlations. In the latter, the distance
between nodes i and j is distributed as kikjX , where ki is the degree of node i and X
is a random variable uniformly distributed on the unit interval. We use the
parameters b = , n = , and k = ; and we compute PH for the weighted network
and for the network in which all adjacent nodes have distance . We denote this
data set by fract and distinguish between the two ways of defining distances
between weights using the abbreviations ‘r’ for random, and ‘l’ for linear.

() Genomic sequences of the HIV virus. We construct a finite metric space using the
independent and concatenated sequences of the three largest genes — gag, pol,
and env — of the HIV genome. We take , different genomic sequences and
compute distances between them by using the Hamming distance. We use the
aligned sequences studied using PH in []. (The authors of that paper retrieved
the sequences from [].) We denote this data set by HIV.

() Genomic sequences of HN. This data set consists of , different genomic
sequences of HN influenza. We compute the Hamming distance between
sequences. We use the aligned sequences studied using PH in []. We denote this
data set by HN.

() Stanford Dragon graphic. We sample points uniformly at random from
-dimensional scans of the dragon [], whose reconstruction we show in
Figure . The sample sizes include , and , points. We denote these data
sets by drag  and drag , respectively.

() C. elegans neuronal network. This is a weighted, undirected network in which each
node is a neuron and edges represent synapses or gap junctions. We use the
network studied using PH in []. (The authors of the paper used the data set
studied in [], which first appeared in [].) Recall that for this example, and also
for the other real-world weighted networks (except for the human genome network
and the US Congress networks), we convert each nonzero edge weight to a
distance by taking its inverse. We denote this data set by eleg.

() Human genome. This is a weighted, undirected network representing a sample of
the human genome. We use the network studied using PH in []. (The authors of
that paper created the sample using data retrieved from [].) Each node
represents a gene, and two nodes are adjacent if there is a nonzero correlation
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between the expression levels of the corresponding genes. We define the weight of
an edge as the inverse of the correlation.j We denote this data set by genome.

() Gray-scale image: -dimensional rotational angiography scan of a head with an
aneurysm. This data set was used in the benchmarking in []. This data set is
given by a -dimensional array of size × × , where each entry stores an
integer that represents the grey value for the corresponding voxel. We retrieved the
data set from the repository []. We denote this data set by vertebra.

() US Congress roll-call voting networks. These two networks (the Senate and House
of Representatives from the th United States Congress) are constructed using
the procedure in [] from data compiled by []. In each network, a node is a
legislator (Senators in one data set and Representatives in the other), and there is a
weighted edge between legislators i and j, where the weight wi,j is a number in [, ]
(it is equal to  if and only if legislators i and j never voted the same way on any
bill) given by the number of times the two legislators voted in the same way divided
by the total number of bills on which they both voted. See [] for further details.
We denote the networks from the Senate and House by senate and house,
respectively. The network senate has  nodes, and the network house has 
nodes. To compute shortest paths, we define the distance between two nodes i and
j to be  –wi,j. In the th Congress, no two politicians voted in the same way on
every bill, so we do not have distinct nodes with  distance between them. (This is
important, for example, if one wants to apply multidimensional scaling.)

() Network of network scientists. This is a weighted, undirected network
representing the largest connected component of a collaboration network of
network scientists []. Nodes represent authors and edges represent
collaborations, and weights indicate the number of joint papers. The largest
connected component consists of  nodes. We denote this data set by netw-sc.

.. Machines and compilers
We tested the libraries on both a cluster and a shared-memory system. The cluster is a Dell
Sandybridge cluster, it has , (i.e., × ) cores of . GHz Xeon SandyBridge, RAM
of  GiB in  nodes and RAM of  GiB in  nodes, and a scratch disk of  TB. It runs
the operating system (OS) Red Hat Enterprise Linux . The shared-memory system is an
IBM System x M server with  (i.e., × ) cores of . GHz, RAM of  GB, and
storage of  TB. It runs the OS Ubuntu ...k The major difference in running shared
algorithms on the shared-memory system versus the distributed-memory system is that
each node in the former has much more available RAM than in the latter. (See also the
difference in performance between computations on cluster and shared memory system
in Tables  and .) To compile Gudhi, DIPHA, Perseus, and Dionysus, we used the
compiler gcc .. on the cluster and gcc .. on the shared-memory system; for both
machines, we used the (default) optimization -O3. Additionally, we used openmpi ..
for DIPHA.

.. Tests and results
We now report the details and results of the tests that we performed. We have made
the data sets, header file to measure memory, and other information related to the tests
available at https://github.com/n-otter/PH-roadmap. Of the six software packages that

https://github.com/n-otter/PH-roadmap
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Table 3 Performance of the software packages measured in wall-time (i.e., elapsed time), and
CPU seconds (for the computations running on the cluster)

Data set (a) Computations on cluster: wall-time seconds

eleg Klein HIV drag 2 random genome

Size of complex 4.4× 106 1.1× 107 2.1× 108 1.3× 109 3.1× 109 4.5× 108

Max. dim. 2 2 2 2 8 2
JAVAPLEX (st) 84 747 - - - -
DIONYSUS (st) 474 1,830 - - - -
DIPHA (st) 6 90 1,631 142,559 - 9,110
PERSEUS 543 1,978 - - - -
DIONYSUS (d) 513 145 - - - -
DIPHA (d) 4 6 81 2,358 5,096 232
GUDHI 36 89 1,798 14,368 - 4,753
RIPSER 1 1 2 6 349 3

Data set (b) Computations on cluster: CPU seconds

eleg Klein HIV drag 2 random genome

Size of complex 4.4× 106 1.1× 107 2.1× 108 1.3× 109 3.1× 109 4.5× 108

Max. dim. 2 2 2 2 8 2
JAVAPLEX (st) 284 1,031 - - - -
DIONYSUS (st) 473 1,824 - - - -
DIPHA (st) 68 1,360 25,950 1,489,615 - 130,972
PERSEUS 542 1,974 - - - -
DIONYSUS (d) 513 145 - - - -
DIPHA (d) 39 73 1,276 37,572 79,691 3,622
GUDHI 36 88 1,794 14,351 - 4,764
RIPSER 1 1 2 5 348 2

Data set (c) Computations on shared-memory system: wall-time seconds

eleg Klein HIV drag 2 genome fract r

Size of complex 3.2× 108 1.1× 107 2.1× 108 1.3× 109 4.5× 108 2.8× 109

Max. dim. 3 2 2 2 2 3
JAVAPLEX (st) 13,607 1,358 43,861 - 28,064 -
PERSEUS - 1,271 - - - -
DIONYSUS (d) - 100 142,055 35,366 - 572,764
DIPHA (d) 926 13 773 4,482 1,775 3,923
GUDHI 381 6 177 1,518 442 4,590
RIPSER 2 1 2 5 3 1,517

For each data set, we indicate the size of the simplicial complex and the maximum dimension up to which we construct the
VR complex. For all data sets, we construct the filtered VR complex up to the maximum distance between any two points. We
indicate the implementation of the standard algorithm using the abbreviation ‘st’ following the name of the package, and
we indicate the implementation of the dual algorithm using the abbreviation ‘d.’ The symbol ‘-’ signifies that we were unable
to finish computations for this data set, because the machine ran out of memory. PERSEUS implements only the standard
algorithm, and GUDHI and RIPSER implement only the dual algorithm. (a), (b) We run DIPHA on one node and 16 cores for the
data sets eleg, Klein, and genome; on 2 nodes of 16 cores for the HIV data set; on 2 and 3 nodes of 16 cores for the dual and
standard implementations, respectively, for drag 2; and on 8 nodes of 16 cores for random. (The maximum number of
processes that we could use at any one time was 128.) (c) We run DIPHA on a single core.

we study, four implement the computation of the dual algorithm, and four implement the
standard algorithm. It is reported in [] that javaPlex implements the dual algorithm,
but the implementation of the algorithmhas a bug and gives awrong output. To our knowl-
edge, this bug has not yet been fixed (at the time of writing), and we therefore test only
the standard algorithm.
For the computations on the cluster, we compare the libraries running both the dual

algorithm and the standard algorithm. The package DIPHA is the only one to implement
a distributed computation. As a default, we run the software on one node and  cores;
we only increase the number of nodes and cores employed when the machine runs out of
memory. However, augmenting the number of nodes can make the computations faster
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Table 4 Memory usage in GB for the computations summarized in Table 3

Data set (a) Computations on cluster

eleg Klein HIV drag 2 random genome

Size of complex 4.4× 106 1.1× 107 2.1× 108 1.3× 109 3.1× 109 4.5× 108

Max. dim. 2 2 2 2 8 2
JAVAPLEX (st) <5 <15 >64 >64 >64 >64
DIONYSUS (st) 1.3 11.6 - - - -
DIPHA (st) 0.1 0.2 2.7 4.9 - 4.8
PERSEUS 5.1 12.7 - - - -
DIONYSUS (d) 0.5 1.1 - - - -
DIPHA (d) 0.1 0.2 1.8 13.8 9.6 6.3
GUDHI 0.2 0.5 8.5 62.8 - 21.5
RIPSER 0.007 0.02 0.06 0.2 24.7 0.07

Data set (b) Computations on shared-memory system

eleg Klein HIV drag 2 genome fract r

Size of complex 3.2× 108 1.1× 107 2.1× 108 1.3× 109 4.5× 108 2.8× 109

Max. dim. 3 2 2 2 2 3
JAVAPLEX (st) <600 <15 <700 >700 <700 >700
PERSEUS - 11.7 - - - -
DIONYSUS (d) - 1.1 16.8 134.2 - 268.5
DIPHA (d) 31.2 0.9 17.7 109.5 37.3 276.1
GUDHI 15.4 0.5 10.2 62.8 21.4 134.8
RIPSER 0.2 0.03 0.07 0.2 0.07 155

For JAVAPLEX, we indicate the value of the maximum heap size that was sufficient to perform the computation. The value
that we give is an upper bound to the memory usage. For DIPHA, we indicate the maximum memory used by a single core
(considering all cores). See Table 3 for details on the number of cores used.

(in terms of CPU seconds) for complexes of all sizes.l We see this in our experiments, and
it is also discussed in []. For the other packages, we run the computations on a single
node with one core.
For computations on the shared-memory system, we compare the libraries using only

the dual algorithm if they implement it, and we otherwise use the standard algorithm. For
the shared-memory system, we run all packages (including DIPHA) on a single core.
In our benchmarking, we report mean computation times and memory measurements.

In Table , we give the computation times for the different software packages. We mea-
sure elapsed and CPU time by using the time function in Linux. We report computa-
tion times with a precision of one second; if a computation took only fractions of a sec-
ond, we report ‘one second’ as the computation time. For space reasons, we report results
for a subset of the computations. (In Additional file  of the SI, we tabulate the rest of
our computations.) In Table , we report the memory used by the processes in terms of
maximum resident set size (RSS); in other words, we give the maximum amount of real
RAM a program has used during its execution. We measure the maximum RSS using the
getrusage function in Linux. The header file that we use to measure memory is avail-
able at https://github.com/n-otter/PH-roadmap. In DIPHA, the measurement of mem-
ory is already implemented by the authors of the software. They also use the getrusage
function in Linux. The package javaPlex is written in Java, and we thus cannot measure
itsmemory as we do for the other packages. However, one can infermemory requirements
for this software package using the value of the maximal heap size necessary to perform
the computations; we report this value in Table . In Table , we give the maximum size of
the simplicial complex for which we were able to compute PH with each software package
in our benchmarkings.

https://github.com/n-otter/PH-roadmap
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Table 5 For each software package in (a), we indicate in (b) the maximal size of the simplicial
complex supported by it thus far in our tests

(a) JAVAPLEX DIONYSUS DIPHA PERSEUS GUDHI RIPSER

st st d st d st d d

(b) 4.5 · 108 1.1 · 107 2.8× 109 1.3 · 109 3.4 · 109 1 · 107 3.4 · 109 3.4 · 109

7.2 Conclusions from our benchmarking
Our tests suggest that Ripser is the best-performing library currently available for the
computation of PH with the Vietoris–Rips complex, and in order of decreasing perfor-
mance, that Gudhi and DIPHA are the next-best implementations. For the computation
of PH with cubical complexes, Gudhi outperforms DIPHA by a factor of  to  in terms
of memory usage, and DIPHA outperforms Gudhi in terms of wall-time seconds by a fac-
tor of  to  (when running on one core on a shared-memory system). Both DIPHA and
Gudhi significantly outperform the implementation in Perseus. For the computation of
PH with the alpha complex, we did not observe any significant differences in performance
between the libraries Gudhi and Dionysus. Because the alpha complex has fewer sim-
plices than the other complexes that we used in our tests, further tests with larger data
sets may be appropriate in future benchmarkings.
There is a huge disparity between implementations of the dual and standard algorithms

when computing PH with the VR complex. In our benchmarking, the dual implementa-
tions outperformed standard ones both in terms of computation time (with respect to both
CPU and wall-time seconds) and in terms of the amount of memory used. This significant
difference in performance and memory usage was also revealed for the software package
Dionysus in []. However, note that when computing PH for other types of complexes,
the standard algorithm may be better suited than the dual algorithm. (See, e.g., the result
of our test for the vertebra data set in Additional file  of the SI.)
To conclude, in our benchmarking, the fastest software packages were Ripser, Gudhi,

and DIPHA. For small complexes, the software packages Perseus and javaPlex are good
choices, because they are the easiest ones to use. (They are the only libraries that need only
to be downloaded and are then ‘plug-and-play,’ and they have user-friendly interfaces.)
Because the library javaPlex implements the computation of a variety of complexes and
algorithms, we feel that it is the best software for an initial foray into PH computation.
We now give guidelines for the computation of PH based on our benchmarking. We list

several types of data sets in Table  and indicate which software or algorithm that we feel is
best-suited to each one. These guidelines are based on the findings of our benchmarking.
Note that one can transform networks into distance matrices, and distance matrices can
yield points in Euclidean space using a method such as multi-dimensional scaling. Natu-
rally, given a finite set of points in Euclidean space, we can compute their distance matrix.
As we discussed in Section ., image data can also be considered as a finite metric space,
so the indications for distance matrices and points in Euclidean space also apply to image
data.

8 Future directions
We conclude by discussing some future directions for the computation of PH. As we saw
in Section , much work has been done on step  (i.e., going from filtered complexes to
barcodes) of the PH pipeline of Figure , and there exist implementations of many fast
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Table 6 Guidelines for which implementation is best-suited for which data set, based on our
benchmarking

Data type Complex Suggested software

networks WRCF JHOLES

image data cubical GUDHI or DIPHA (st)
distance matrix VR RIPSER
distance matrix W JAVAPLEX
points in Euclidean space VR GUDHI

points in Euclidean space Č DIONYSUS

points in Euclidean space α (only in dim 2 and 3) DIONYSUS ((st) in dim 2, (d) in dim 3) or GUDHI

Recall that we indicate the implementation of the dual algorithm using the abbreviation ‘d’ following the name of a package,
and similarly we indicate the implementation of the standard algorithm by ‘st’. Note that for smaller data sets one can also
use JAVAPLEX to compute PH with VR complexes from points in Euclidean space, and PERSEUS to compute PH with cubical
complexes for image data, and with VR complexes for distance matrices. The library JHOLES can only handle networks with
density much less than 1.

algorithms for the reduction of the boundary matrix. Step  (i.e., going from data to a fil-
tered complex) of the PH pipeline is an active area of research, but many sparsification
techniques (see, e.g., [, ]) for complexes have yet to be implemented, and more re-
search needs to be done on steps  and  (i.e., interpreting barcodes; see, e.g., [, ,
]) of the PH pipeline. In particular, it is important to develop approaches for statistical
analysis of persistent homology.
We believe that there needs to be a community-wide effort to build a library that imple-

ments the algorithms and data structures for the computation of PH, and that it should be
done in a way that new algorithms and methods can be implemented easily in this frame-
work. This would parallel similar community-wide efforts in fields such as computational
algebra and computational geometry, and libraries such as Macaulay [], Sage [],
and CGAL [].
We also believe that there is a need to create guidelines and benchmark data sets for the

test of new algorithms and data structures. The methods and collection of data sets that
we used in our benchmarking provide an initial step towards establishing such guidelines
and a list of test problems.

9 List of abbreviations
. α: alpha complex
. d (following the name of a library): implementation of the dual algorithm
. Č: Čech complex
. PH: persistent homology
. SI: Supplementary Information
. st (following the name of a library): implementation of the standard algorithm
. TDA: topological data analysis
. VR: Vietoris–Rips complex
. W: weak witness complex

. Wν : parametrized witness complexes
. WRCF: weight rank clique filtration

10 Availability of data and materials
The processed version of the data sets used in the benchmarking and the scripts written
for the tutorial are available at https://github.com/n-otter/PH-roadmap. The open-source

https://github.com/n-otter/PH-roadmap
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libraries for the computation of PH studied in this paper are available at the references
indicated in the associated citations.

Additional material

Additional file 1: Additional computations. (pdf )
Additional file 2: Tutorial for ‘A roadmap for the computation of persistent homology’. (pdf )
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Endnotes
a Conversely, under favorable conditions (see [78], Corollary 4.33), these algebraic invariants determine the topology

of a space up to homotopy— an equivalence relation that is much coarser (and easier to work with) than the more
familiar notion of homeomorphy.

b Note that this is usually called an ‘abstract simplicial complex’ in the literature.
c A pair ({Mi}i∈I , {φi,j :Mi →Mj}i≤j), where (I,≤) is a totally ordered set, such that for each i, we have that Mi is a vector

space and the maps φi,j are linear maps satisfying the functoriality property (1), is usually called a persistencemodule.
With this terminology, the homology of a filtered simplicial complex is an example of persistence module.

d Although the collection of intervals is unique, note that one has to choose a vertical order when drawing the
intervals in the diagram, and there is therefore an ambiguity in the representation of the intervals as a barcode.
However, there is no ambiguity when representing the intervals as points in a persistence diagram (see Figure 5(d)).

e A set S of points in R
d is in general position if no d + 2 points of S lie on a d-dimensional sphere, and for any d′ < d,

no d′ + 2 points of S lie on a d′-dimensional subspace that is isometric to R
d′ . In particular, a set of points S in R

2 is
in general position if no four points lie on a 2-dimensional sphere and no three points lie on a line.

f As we mentioned in Section 4, for the reduction of the boundary matrix and thus the computation of PH, it is crucial
that one uses simplicial homology with coefficients in a field; see [61] for details.

g This map is called ‘low’ in the literature, because one can think of it as indicating the index of the ‘lowest’ row— the
one that is nearest to the bottom of the page on which one writes the boundary matrix — that contains a 1 in
column j.

h ‘Wall time’ is the amount of elapsed time perceived by a human.
i Singular homology is a method that assigns to every topological space homology groups encoding invariants of the
space, in an analogous way as simplicial homology assigns homology groups to simplicial complexes. See [78] for
an account of singular homology.

j We note that the weight should be the correlation; this issue came to our attention when the paper was in press.
k Note that we performed the computations for GUDHI and RIPSER at a different point in time, during which the

shared-memory system was running the OS Ubuntu 16.04.01.
l Based on the results of our tests, we think of small, medium, and large complexes, respectively, as complexes with a
size of order of magnitude of up to 10 million simplices, between 10 million and 100 million simplices, and between
100 million and a billion simplices.
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