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Abstract

Background

Dengue is a major mosquito-borne viral disease and an important public health problem.
Identifying which factors are important determinants in the risk of dengue infection is critical
in supporting and guiding preventive measures. In South-East Asia, half of all reported fatal
infections are recorded in Indonesia, yet little is known about the epidemiology of dengue in
this country.

Methodology/Principal findings

Hospital-reported dengue cases in Banyumas regency, Central Java were examined to
build Bayesian spatial and spatio-temporal models assessing the influence of climatic,
demographic and socio-economic factors on the risk of dengue infection. A socio-economic
factor linking employment type and economic status was the most influential on the risk of
dengue infection in the Regency. Other factors such as access to healthcare facilities and
night-time temperature were also found to be associated with higher risk of reported dengue
infection but had limited explanatory power.

Conclusions/Significance

Our data suggest that dengue infections are triggered by indoor transmission events linked
to socio-economic factors (employment type, economic status). Preventive measures in
this area should therefore target also specific environments such as schools and work
areas to attempt and reduce dengue burden in this community. Although our analysis did
not account for factors such as variations in immunity which need further investigation, this
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study can advise preventive measures in areas with similar patterns of reported dengue
cases and environment.

Author Summary

Dengue has been detected in Indonesia and transmission is progressively rising to account for
half of all fatal dengue cases recorded in South-East Asia. However, little is known about the
epidemiology of the virus, which may hamper the effectiveness of preventive strategies carried
out in the country. Identifying local risk factors is critical in assuring preventive measures are
efficiently targeted. In this study we carried out a spatial, long-term analysis of all hospital-
reported dengue cases in the 329 villages of the Banyumas Regency of Central Java, Indonesia
between 2000 and 2013. We determined which variables, including environmental factors,
geography, socio-economic status, and access to health services, significantly impacted the vil-
lage-level risk of dengue infection between 2000 and 2013. Our data give a large scale overview
of dengue risk factors in this Regency and to our knowledge is the first study of such scale in
Indonesia. Our findings have the potential to guide targeted preventive planning locally as we
identify intervention points in the socio-economic make up of this Regency. The outcomes of
this study need to be confirmed in other affected areas of Indonesia.

Introduction

Dengue virus (DENV) is a positive-strand RNA virus (Flaviviridae) that is spread by Aedes
aegypti and also Ae. albopictus mosquitoes [1]. DENV infection rates worldwide may have
been underestimated, with a recent study suggesting 390 million infections per year [2]. Den-
gue disease has been recognised as a public health problem in Indonesia since it was first
detected in 1968 in the cities of Jakarta and Surabaya [3]. Since then, Indonesia has experienced
periodic outbreaks of dengue with increasing numbers of infections and severity [3, 4], record-
ing nearly a third of the DENV cases and half of all fatality cases reported in South-East Asia
between 2001 and 2010 [5]. Nonetheless, dengue is very poorly researched in Indonesia [6].

Multiple factors, including environmental, biological and demographic factors are believed
to be important in DENV transmission [2, 7]. Climate is considered a driving force behind
DENV epidemics and transmission; behaviour, ecological, demographical and socio-economi-
cal changes/conditions however, are key determinants in local dengue risk (see for example
[8-11]). To clarify which factors principally influence DENV epidemiology, long-term data on
climate and other socio-ecological changes should be evaluated against each other in spatio-
temporal models [12-17].

The fundamental challenge for determining risk factors of DENV infection is how to best
develop epidemiological models at a regional and/or local level with complete data [18]. Several
statistical methods have been used to determine the relationship between dengue and putative
explanatory variables [12]. Both the multiplicity of approaches to designing risk maps and the
large number of predictors found associated with the risk of dengue render it necessary to eval-
uate risk factors for each geographical situation [13]. A recent comprehensive review of studies
using modelling approaches to assess dengue risk highlighted the variety of modelling
approaches, and suggested that high resolution risk maps factors such as human movement
and housing might be more useful for assessing dengue occurrence than climatic data [19, 20].
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This suggests that dengue risk assessments need to take into account a variety of variables that
reflect local conditions.

In this study we carried out a large scale analysis of demographic, socio-economic and envi-
ronmental variables to determine the most influential factors related to local DENV infections
in Java, Indonesia. In particular, we built Bayesian spatial and spatio-temporal models to evalu-
ate the influence of determinants that may vary locally while accounting for spatio-temporal
variations in climate. This conceptual shift from universal to multivariate local analysis will
allow the development of better strategies for dengue prevention control in the study area, opti-
mising control activities to its unique characteristics as has been done for other vector-borne
disease such as Malaria [21]. This is also a clear improvement from previous risk models as
spatio-temporal variations in climate have often been omitted when analysing dengue surveil-
lance data [18].

Methods
Ethical approval

Studies conducted here were carried out with ethical approval from the University of Glasgow
(Project Number: 2012082) and the Ministry of National Education, Faculty of Medicine Gad-
jah Mada University, Medical and Health Research Ethics Committee (KE/FK/323/EC). Data
were analyzed anonymously.

Case data

All hospital-reported dengue cases (confirmed by ELISA or based on clinical symptoms; lead-
ing to hospitalization/hospital stays) in Banyumas Regency, Central Java, from January 1%
2000 to December 31% 2013 were extracted from central databases at the Banyumas Regency
Health office and aggregated at village-level (Fig 1). Cases were allocated to a village from the
address stated in the hospital report form.

Population and socio-economic data

Population data were gathered for all 329 villages in Banyumas Regency from the Indonesian
2010 census. Between 2001 and 2010, Central Java experienced limited population growth of
<4% [22]. For the purpose of analysis, we therefore assumed that the underlying at-risk popu-
lation remained stable throughout the study period (Fig 2A). However, to account for potential
local biases due to temporal changes in population, land cover data for the year 2000 and 2010
were extracted from maps of insular Southeast Asia, freely available at the Centre for Remote
Imaging, Sensing and Processing (CRISP) of the National University of Singapore [23]. For
each village, the proportions of cells classified as urban cover (Fig 2B) and the proportions of
cells classified as plantation cover were calculated for both the year 2000 and 2010. Differences
between yearly proportions of coverage were computed as a proxy to the amount of changes
that occurred in the population distribution (Fig 2C).

In total, 53 socio-economic descriptors were recorded in the census data, providing infor-
mation on the age structure, working status and education level for each village. Given the
strong correlation between these variables, we constructed proxies of socio-economic status for
each village using principal component analysis (PCA) (S1 Appendix). Two significant axes
(p<0.001) explained a total of 60.2% of the total variation in the data, with the first and second
explaining 42.2% and 18.2% respectively. For the purpose of analysis, these measures were
standardised to range between 0 and 100. The first axis (PCA1, Fig 2D) provides information
regarding employment type and education levels in each village, where a higher number
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Fig 1. Location and empirical dengue reports in the Banyumas Regency, Central Java, Indonesia. (A) Overall empirical risk of
dengue, measured as Standardised Morbidity Ratio (SMR, observed-to-expected cases), in each village of the regency between 2000
and 2013. Data collated by the Banyumas Regency Health Services. (B) Comparison of the incidence rate recorded per year in the
Regency and in Indonesia. National figures extracted from [43]. (C) Location of the Banyumas Regency in central Java.

doi:10.1371/journal.pntd.0004964.9001

represents an increase in the number of people that are better educated, and are employed as
civil servants or business and services industry. The second axis (PCA2, Fig 2E) provides infor-
mation on the age structure in each village, with 0 indicating villages with a high proportion of
retired people, whereas 100 indicates those with a high proportion of working families.

Three variables were created to adjust for possible confounding. Firstly, a normalized popu-
lation density per village was calculated by computing the log;o-transformed number of inhabi-
tants recorded in 2010 per squared kilometres. This variable was created as it was assumed that
mosquito biting rate may vary as a function of the availability of the host population by creat-
ing more cases in highly populated areas of the Regency. The second variable is the shortest
Euclidean distance between the centroid of each village to the nearest hospital (Fig 2F). This
variable was computed as a proxy for access to health care facilities and, thereby, misreporting.
Finally, the presence or absence of a hospital in the boundaries of village was recorded as a
binary predictor variable.

Environmental data

Environmental data from various sources and with various spatial and temporal resolutions
were extracted (S1 Appendix). Digital elevation data was downloaded from the Consultative
Group on International Agricultural Research-Consortium for Spatial Information [24]. Data
on the proxies of precipitation were obtained from the WorldClim—Global Climate Data [25].
All data on the enhanced vegetation index (EVI), day-time (LST) and night-time land surface
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Fig 2. Dengue risk factors. (A) Total number of inhabitant in villages, as recorded in the Indonesian 2010 census. (B) Proportion of urban area in the
village (%). (C) Changes in the proportion of urban area in the village (% per 10 years), as recorded by the difference in proportion of urban area
between 2000 and 2010. (D) First socio-economic axis (PCA1), informing on the structure in employment type and education. (E) Second socio-
economic axis (PCA2), informing on the age structure in each village. (F) Straight-line distance to the nearest hospital within the Regency (in km). (G)
Mean average daytime temperature (°C), as recorded between March 2000 and December 2013. (H) Mean precipitation (mm per day), as recorded
between January 1990 and December 2000. (1) Mean vegetation index (EVI), as recorded between February 2000 and December 2013.

doi:10.1371/journal.pntd.0004964.9002

temperatures (nLST) that were available over the study period were sourced from the Terra sat-
ellite product version-5 from the Moderate Resolution Imaging Spectroradiometer [26]. For all
environmental measures (EVI, LST, nLST, precipitations), summary statistics were computed
for each individual cell over all selected layers. Summary statistics considered in these analyses
were: the overall mean, standard deviation, minimum and maximum, as well as similar esti-
mates for the dry and rainy seasons. The dry season was considered to be occurring between
May and September. Village-level data was collated by computing the mean estimates of all
digital cells (either representing the global or yearly measures) which were overlaid by the
boundaries of each village. Fig 2G-21I illustrate the spatial variability of a few of the considered
environmental measures.

Statistical analysis

A Bayesian Poisson spatial analysis was carried out to quantify the effect of factors influencing
the number of people reported to have a dengue infection in the Banyumas regency during the
period 2000 to 2013. For this analysis the outcome was the number of reported dengue cases in
each village, y = {y},- - -,y,}, during the period of interest (see above). The number of cases was
adjusted for the frequency-dependence of the transmission by including an offset term
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corresponding to the expected number of dengue cases for each village. The expected number
of cases was considered as emerging from a homogenous process and proportional to the pop-
ulation of each village.

We used integrated nested Laplace approximations (INLA) [27] to do fast approximate
Bayesian inference. Analyses were done in R (version 3.1.1) and the R-INLA package [28]. For
all analyses, two model structures were considered (see S1 Appendix for details). Model 1 was a
spatial-only Poisson regression model, developed upon the cumulative number of cases
recorded during the study period in each village, and with variance components being only
related to villages. Model 2 was a spatial-temporal Poisson regression model, developed upon
the number of cases recorded per year in each village, and in which spatial, temporal and spa-
tio-temporal variance components are considered. While Model 1 quantifies the overall
strength of the association between the number of dengue cases in each village and spatially-
structured epidemiological factors hypothesized to influence disease transmission and report-
ing during the study period, Model 2 tests for the resilience of these associations to both tempo-
ral and spatio-temporal structures in the data. It is worth noting that Model 1 considered all
potential explanatory, village-level environmental and climatic variables as fixed for the whole
14-year study period, whereas Model 2 considered these variables to change for each year of
the study period. Details for implementing spatial and spatio-temporal statistical models with
INLA are provided elsewhere [29, 30].

Because spatial and spatio-temporal variance components can be modelled in different
ways [29], the most parsimonious model structure for both models was selected prior to analy-
ses according to model’s Deviance Information Criteria (DIC) [31] and mean logarithmic
scores [32] (see S1 Appendix for further details).The structure of the spatial (Model 1) and spa-
tio-temporal (Model 2) models which best represent the data were formulated such as:

n; =log(p;) = o+ 3 Bixy + 0, Model 1

Ny = log(pit) =o+ thoﬂkxkit +v,+o,+¢,+7,+ 5it Model 2

where the ratio p; and p;; are the standard morbidity ratio (SMR, i.e. observed-to-expected den-
gue cases) for each village i during the entire study period and in each year ¢, respectively; o the
intercept, quantifying the average dengue rate in the regency; x; and xx;, the value of the k™
potential risk factor (or fixed effects) for each village i and for each village i in each year ¢,
respectively. The components ¢; and v; are the structured and unstructured random effects spe-
cific to each village i; whereas y, and ¢, represent the temporally structured and unstructured
random effect. Finally, the component §;, represents the interaction between space and time.
Here, J;, is assumed being the results of interaction between the two unstructured effects v; and
¢,. Consequently, we assume no spatial and/or temporal structure on the interaction. There-
fore, 8;, similarly to the other random effects, is following a normal distribution such as

3, ~N(0,1).

We used uninformative priors for all variables tested individually in order to estimate the
parameters that fitted best the data, as no previous data were available for Indonesia. Briefly,
the priors assigned to the model coefficients were normally distributed, as were the coefficients
of the posterior distributions. In both models, the priors assigned to the fixed parameters were
uninformative with distribution ~ A(0, 0) for the intercept and ~ N(0,0.001) for other fixed
effects (i.e. with a normal distribution of mean 0 and with precision of 0 or 0.001 for intercept
or other fixed effect, respectively), as was the prior distribution assigned to the various random
effects. For all random effects, the precision v was defined as 6 = log(t), where the initial values
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of the hyperparameter 0 followed a log-gamma distribution (parameter values: scale = 1,
shape = 5e-04).

For each model structure (i.e. Model 1 and Model 2), each variable was examined individu-
ally in a univariate analysis. Variables with an 80% credible interval (Cr.1.) of their posterior
distribution which does not overlap 0 and that are not correlated to other variables (Pearson’s
correlation coefficient, r, smaller than 0.7) were then taken forward to the multivariate statisti-
cal analysis. A stepwise elimination process was applied to retain associated variables, along
with biologically plausible two-way interactions. The DIC was used to compare model perfor-
mance. Variables were considered significantly associated with the number of reported cases in
a village if their 95% credible interval of their posterior distribution does not overlap 0. The
association of all significant climatic variables with the risk of dengue infection was further
investigated by evaluating their shape and strength over various biologically-relevant ranges. In
addition, the stability of all associations was checked by systematic removal of variables.

Quality of model inferences were evaluated by comparing model-based predictions with
observed village-level values of SMR, first through visual comparison, and then by using Pear-
son’s product moment correlation coefficient (r). The uncertainty associated with the posterior
means can also be mapped and provide useful information [29, 33]. In particular, we were
interested to identify which villages show excess dengue risk through the whole study period
and in each individual year. To do so, we plotted the spatial distribution of the posterior proba-
bilities for the spatial random effect p(exp(c;) > 1|y) resulting from both Model 1 and Model 2.
Similarly, we plotted the spatial distribution of the posterior probabilities for the spatio-tempo-
ral effect p(exp(8;) > 1|y) resulting from Model 2. As defined in [29], an increased risk with a
small level of associated uncertainty is indicated in villages with a spatial (or spatio-temporal)
relative risk above 1 and an associated posterior probabilities above 0.8.

Results

For the period 2000 to 2013, 3810 DENV cases were recorded by Banyumas Regency Health
office which corresponds to a mean incidence of 17.5 reported cases per 100 000 inhabitants.
The temporal trends follow closely with national figures, showing a sharp increase from the
year 2000 and peaks of incidence in 2008, 2010 and 2013 (Fig 1B). The village-level risk of den-
gue cases in the Regency varies between 0 and 6.2 more cases than what was expected (Fig 1A),
with the largest standardized morbidity ratio values centred on the main urban area of Purwo-
kerto, the capital of the Banyumas Regency.

Of the 76 putative explanatory variables, 56 were individually associated with the village-
level risk of dengue cases (S1 Fig). Population density and the first socio-economic axis were
highly correlated (Pearson’s r>0.7) and only the first socio-economic axis has been considered
further since it explained a greater amount of variability. The socio-economic variable, proxy
for the level of education and employment structure in each village, was the most important
risk factor in the final spatial model (Table 1) and showed a positive association with the vil-
lage-level risk during the study period. Villages with large numbers of individuals that are bet-
ter educated, and people that are employed as civil servants or in business and services were
significantly more at-risk of reporting dengue infection during the study period. Distance to
the nearest hospital was also negatively associated with the risk of dengue cases, suggesting a
significant risk of underreporting for every kilometre of distance further away from the closest
hospital or health centre. The average minimum night-time temperature was the only signifi-
cant environmental risk factor, revealing an increasing risk of dengue infection with a decreas-
ing minimum night-time temperature. The risk of dengue infection was increased by 28%
(incidence risk ratio (IRR) = 1.28, 95% Cr.I. 1.04 to 1.58) in areas with night time temperatures
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Table 1. Model 1, spatial-only model. Posterior estimates of the final spatial-only model (Model 1) for the risk of dengue infections in the Regency of Banyu-
mas Regency, Central Java, Indonesia.

Median 95% credible interval IRR ADIC
Intercept -2.08 -2.56to -1.60 - -
PCA1 0.04 0.03t0 0.05 1.04 28.0
Distance to hospital (km) -0.08 -0.12t0-0.03 0.93 1.5
Average minimum night-time land surface temperature (°C) 4.6
Less than 10°C | 0.50 0.18100.82 1.64
10°Cto 15°C | 0.25 0.04t0 0.46 1.28
15°C and more | Ref.
Spatial variancet 0.95 0.71t01.27 - 1758

tVariance of the posterior distribution of the spatial process. This variance measure indicates the degree of variability in the disease process that is not
explained by the included predictors but is specific to situations in village.

IRR = incidence risk ratio. ADIC = Changes in Deviance Information Criterion (DIC) due to the removal of a risk factor from the full model. The incidence risk
ratio (IRR) is calculated as the exponential of the posterior estimates and represents the proportional increase in incidence risk per unit increase of the
predictor. For each unit increases of the predictor, a value IRR>1 indicates that the risk would increase, whereas a value IRR<1 indicates that the risk would
decrease. A value IRR = 1 indicates a lack of influence of the variable in the risk of dengue. The DIC indicates the performance of the model to explain the
observed disease process, whereas ADIC shows how much each risk factor influences such performance. If ADIC = 0, this would indicate a variable with
little influence in the full model to explain the observed disease process. In contrast, large values of ADIC would indicate the important variables in explaining
the observed disease process.

doi:10.1371/journal.pntd.0004964.t001

between 10°C and 15°C, and by 64% (IRR = 1.64, 95% Cr.I. 1.20 to 2.27) in areas with night
time temperatures below 10°C, compared to areas with a temperature of 15°C and greater.

We assessed the explanatory performance of the spatial model by examining how the model
predictions agree with the observations (Fig 3A) and calculating the Pearson’s correlation coef-
ficient between observations and predictions. A value of one indicates perfect correspondence
between the model inferences and the observations. The Pearson’s correlation coefficient was
0.984 (95% CI 0.98 to 0.99, p<0.0001), indicating a high concordance of the model inferences
with observations. However, such a high concordance may be explained by the spatial effect
alone. Looking at the spatial random process (Fig 4A), it is clear that the spatial structure relat-
ing to the risk of dengue infection observed in the Regency (Fig 1A) has been explained by the
three significant explanatory variables. Additionally, the residual spatial process revealed areas
where the risk of dengue infection is significantly high (Fig 4B) but is explained neither by envi-
ronmental nor socio-economic variables. The area around the capital city of Purwokerto still
remains at higher risk, indicating that the risk of dengue infection was not entirely accounted
for by the model’s predictors in this location. In addition, villages in the South-West of the
Regency may undergo different processes leading to disease than other areas.

We further examined how resilient our results were to spatio-temporal changes observed in
the Regency during the study period. S2 Fig provides the outcome of the univariate analysis
whereas Table 2 provides the posterior estimates of the best explanatory multivariate model for
the annual incidence of dengue in the regency. Taking the spatio-temporal effect into account
for changes in the disease process due to periods of particularly high (or low) incidence in par-
ticular villages did not change our overall conclusions. Both influential explanatory variables
(Table 2) and the structure of the residual spatial process (Fig 4C) remained unchanged. Com-
paring mean inferences from the spatio-temporal model with mean observed annual SMR for
each village (Fig 3B) shows good concordance of the model inferences with observations, with
a Pearson’s correlation coefficient of 0.944 (95% CI 0.93 to 0.95, p<<0.0001).
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Fig 3. Comparison between observed and predicted SMR for both models. (A) Goodness-of-fit for the spatial-only model, Model 1. (B) Goodness-
of-fit for the spatio-temporal model, Model 2. Goodness-of-fit was computed by comparing the observed standardised morbidity ratio (SMR, i.e.
observed-to-expected cases) for each village of the study area with those computed from the spatial-only and spatio-temporal models. Solid diagonal line
indicates where values should lay for a perfect correspondence between predictions and observations. Inferences from Model 2 were averaged at village
level to provide a proper comparison with Model 1.

doi:10.1371/journal.pntd.0004964.9003

The location of villages showing significant higher residual annual incidence, as indicated
by village-specific posterior probabilities p(exp(5;) > 1|y) > 0.8, is shown in S3 Fig, revealing
that villages with hotspots of infection may change over time. The explanations for these spa-
tio-temporal variations that affect villages may include movement of people between villages,
change of habits and behaviour, virus strain replacement and host responses evolving (e.g.
herd and individual immunity). It would require in depth analysis of such villages to determine
the exact reasons for this observation. This however, does not affect the overall conclusions of
the study.

Discussion

In this study, we assessed the influence of various risk factors for dengue infection in the
Banyumas Regency, Central Java, Indonesia. This study uses a wealth of data from 2000-2013
to precisely evaluate the influence of putative village-level risk factors. Over a large target popu-
lation of almost two million people at risk and spread out over 329 villages, we developed spa-
tial and spatio-temporal dengue risk models [18] that have previously been lacking for this
important South-East Asian country.

We found that increasing village-level socio-economic profile was the most significant con-
tributor to risk of DENV infection. This finding is consistent with the general phenomenon of
wealthier populations (with high levels of education and employment) being more likely to
seek healthcare when infected with dengue than poor populations [34], and thereby being
more likely to be reported as infected. However, as most hospitals in the Regency are located in
villages with larger proportion of people of high socio-economics status, including hospital
proximity in our analysis should have accounted for any over-reporting biases due to high
socio-economics. Although we cannot categorically rule out that some small bias remains,
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Fig 4. Adjusted village-level risk of dengue for the period 2000-2013. (A) Map of the spatial pattern of the unexplained risk for dengue
infection, as identified in Model 1. The risk ratio takes the value one if no deviation exists between the model’s inferences based on the included,
known risk factors and observations. Values of less than 1 (white and lightest shade of green) indicate villages that have a lesser risk of
infection than predicted, whereas the darker shade of green indicates villages for which the model did not account for all the risk of infection. (B)
Distribution of the significant village-specific posterior probability of the spatial random effect for Model 1. (C) Distribution of the significant
village-specific posterior probability of the spatial random effect for Model 2. Villages in dark red in (B) and (C) show villages where posterior
probabilities p(exp(o;) > 1]y) > 0.8, indicating an excess risk of dengue with relatively small level of associated uncertainty.

doi:10.1371/journal.pntd.0004964.9004

Table 2. Model 2, spatio-temporal model. Posterior estimates of the final spatio-temporal model (Model 2) for the risk of dengue infections in the Regency
of Banyumas, Central Java, Indonesia.

Median 95% credible interval IRR ADIC

Intercept -2.39 -2.85t0-1.93
PCA1 0.04 0.04t0 0.05 1.04 271
Distance to hospital (km) -0.06 -0.10t0 -0.02 0.94 0.11
Minimum night-time land surface temperature (°C) 4.34

Less than 20°C | 0.29 0.081t0 0.49 1.33

20°C and more | Ref.
Spatial variancet 0.63 0.42100.92 49.9
Spatio-temporal variancett 0.42 0.35t00.51 747.7
Village effect* 0.0006 0.0001 to 0.0087 25.4

tVariance of the posterior distribution of the structured spatial process.

ttVariance of the posterior distribution of the spatio-temporal process.

*Variance of the posterior distribution of the unstructured spatial process. These variance measures indicate the degree of variability in the disease process
that is not explained by the included predictors.

IRR = incidence risk ratio. ADIC = Changes in Deviance Information Criterion (DIC) due to the removal of a risk factor from the full model. Interpretations for
IRR and ADIC can be found in Table 1.

doi:10.1371/journal.pntd.0004964.t002
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most of the observed influence of socio-economics should be attributable to the risk of dengue
infection rather than the probability of reporting. As such, our results suggest that urbanized
areas, in which people have better jobs and socio-economic conditions, have a greater risk of
dengue infections.

Village-level risk of DENV infection can be expected to result from an increased risk of
exposure to vector mosquitoes (mostly Ae. aegypti). In this situation, two alternative source of
exposure can be advanced to explain such pattern. Firstly, urbanized areas may contain more
artificial breeding sites (such as buckets, water-storage containers, aquariums, traditional bath
tubes) than in rural areas, increasing the risk of dengue infection. However, recent entomologi-
cal survey in four villages of the Regency [35] showed artificial breeding sites were found
equally important regardless of villages’ dengue status (i.e. endemic, sporadic or dengue-free).
Secondly, urbanized areas may promote exposure to adult vectors, particularly to Ae. aegypti.
While this is consistent with the capture rate of this species in urban areas in the Regency [35],
reasons for the presence of high adult vector population in urban areas are not known and at
least one rural area in this study showed comparable numbers of adult Ae. aegypti in the rainy
season. However, the clear absence of influence of most village-level environmental variables
on the risk of dengue infection suggests a more complex vector ecology, most likely related to
the greater presence of suitable micro-environments in urban areas than elsewhere in the
Regency. Nevertheless, given that Ae. aegypti prefers to feed indoor, exposure may either occur
at home or inside work spaces, or in their close vicinity. Of particular interest, presence of adult
Ae. aegypti inside work spaces could potentially result in increased exposure, depending for
example on the nature of the business or work (for example those with important human
movement or transit) and subsequently allow dengue to spread more efficiently between peo-
ple. Past studies have suggested the importance of human movement in dengue transmission
even at local level, and our data may be a further reflection of such findings [9, 10, 17, 36]. If
such a hypothesis is correct, it would suggest that control measures to eliminate vector mosqui-
toes inside work spaces or homes should be a primary aim to reduce dengue cases in the
Regency. Instead, current programmes rely largely on large scale efforts to control mosquito
populations, spraying insecticide and larvicides inside villages. Such control programmes may
not be fully effective to control domestic mosquitoes such as Ae. aegypti within indoor areas
(where control is most required) but may lead to the development of resistance in vector popu-
lations [37, 38].

The role of socio-economic factors is increasingly recognised as an important factor in the
local risk of DENV infection, with worsening socio-economic conditions and lack of knowl-
edge enhancing the risk of exposure [39, 40]. However, such data are difficult to compare, lim-
iting our capacity to draw a clear and consistent picture on the impact of socio-economics on
the overall risk of DENV infection. Our results highlight the importance of local risk assess-
ments, not only providing critical information to improve targeted control strategies but also
identifying current weaknesses in dengue surveillance. Indeed, there was an increasing risk of
underreporting DENV cases with increasing distance to health centres/hospitals in the
Regency. Such an approach also identified areas (Fig 4) where the risk of infection was not
totally explained by our model. Whether it is due to other factors that were not accounted for
by the various variables tested in this study or the circulation of other dengue-like diseases is
unknown. Furthermore, our data capture patients with severe symptoms and who are hospital-
ized, and this may not always accurately reflect virus circulation. It may, for example, indicate
introduction and circulation of new serotypes or dengue-like pathogens and subsequently
more severe clinical outcome. Alternatively, this may reflect unwillingness or inability to obtain
medical support with distance to medical support which may be reflected in the observation
outlined above (increased risk of underreporting with distance to health centres/hospitals).
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These possibilities require further investigation. Moreover patients who may seek treatment in
neighbouring regencies are not captured; but for example in the West of the Regency (Fig 4B
and 4C) such an effect would result in an artificial decrease in dengue cases yet there is excess
of risk of dengue cases that is not explained by our model. Nevertheless, our results highlight
the difference in the epidemiology of dengue between urban and rural areas and thereby raise
the importance of modulating surveillance systems accordingly.

Recent studies have also increasingly analysed the role of temperature variation on dengue
transmission, which is important in natural settings and impacts vector capacity and compe-
tence [41, 42]. In this study we noticed an increased risk (see Tables 1 and 2) for dengue infec-
tion at low night time temperatures, which may seem counterintuitive. Interestingly one study
described that large temperature variations at a low mean temperature resulted in shorter
extrinsic incubation periods, and thus possibly higher transmission potential [42]. Although
such a reduction in extrinsic incubation period cannot be rejected to explain our finding, it is
unlikely to be the main reason since extreme low temperatures are not suitable for mosquito
activities. Instead, we believe that low night time temperatures may influence human behav-
iour, for example by staying indoors at nights when cold, and correlate to increased risk associ-
ated with indoor exposure. While this hypothesis may be plausible, further studies are required
to untangle the cause(s) behind our findings.

This extensive study provides, to our knowledge, the first in-depth assessment of factors
influencing the risk of DENV infection in Indonesia. It can form the base for tracking risk fac-
tors in Indonesia and elsewhere in South-East Asia. This study did not take into account factors
such as variations in immunity at individual/local level which may influence disease dynamics
and these are deficiencies that need to be address in further studies. We suggest nonetheless
that we have identified features that may help improving control and surveillance strategies in
Java and these findings need implemented and follow-up studies carried out to verify that they
can lead to a reduction in dengue cases in this area.

Supporting Information

S1 Appendix. Description of models and underlying parameters: socio-economic variables,
management of environmental data, modelling procedures.
(DOCX)

S1 Fig. Inferences and correlation for all considered explanatory variables tested using the
spatial-only model. Posterior mean and posterior 80% credible interval (A), amount of devi-
ance explained (B) and correlation (C) for each fixed effect variables tested in the univariate
regression model of the cumulative number of dengue cases reported during the period 2000
2013 in the regency. In (A), black dots are the posterior mean for each covariate taken individ-
ually, whereas error bars are the 80% credible interval for the posterior marginal distribution of
the covariates. In (B) vertical line represents the DIC estimate for the null model, whereas dots
and segments represent deviations ADIC estimated when including covariates alone. In (C)
correlation is measured by the Pearson’s correlation r, with the vertical dotted red line indicat-
ing r=0.7. In (A), variables showing significant influence on the structured random effect at
an alpha level of 0.2 are indicated with a red dot.

(TIFF)

S2 Fig. Inferences and correlation for all considered explanatory variables tested using the
spatio-temporal model. Posterior mean and posterior 80% credible interval (A), amount of
deviance explained (B) and correlation (C) for each fixed effect variables tested in the univari-
ate regression model of the number of dengue cases reported in each village per year during the
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period 2000-2013 in the regency. In (A), black dots are the posterior mean for each covariate
taken individually, whereas error bars are the 80% credible interval for the posterior marginal
distribution of the covariates. In (B) vertical line represents the DIC estimate for the null
model, whereas dots and segments represent deviations ADIC estimated when including covar-
iates alone. In (C) correlation is measured by the Pearson’s correlation r, with the vertical dot-
ted red line indicating r = 0.7. In (A), variables showing significant influence on the structured
random effect at an alpha level of 0.2 are indicated with a red dot.
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$3 Fig. Map of the unexplained spatio-temporal risk for dengue infection, as identified in
the final spatio-temporal model. Villages in dark red show significant higher residual annual
incidence, as measured by the posterior probability p(exp(6;;) > 1|y) > 0.8, in each year of the
considered study period.
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