385 research outputs found
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Rostral Prefrontal Cortex and the Focus of Attention in Prospective Memory
Prospective memory (PM) denotes the function to realize intentions after a delay while being immersed in distracting ongoing (OG) activity. Here, we scrutinize the often-reported involvement of rostral prefrontal cortex (rPFC; approximating Brodmann area 10) in such situations: This region might mediate attention between external stimuli and the internally maintained intention, that is, between stimulus-oriented (SO) and stimulus-independent (SI) processing. Using functional magnetic resonance imaging (fMRI) we orthogonally crossed 1) PM versus OG activity only, with 2) SO versus SI attention. In support of the hypothesis, common regions of medial rPFC exhibited greater blood oxygen level–dependent (BOLD) signal for the contrasts of both OG task only versus PM and SO versus SI attending. However, activation related to the former contrast extended more superiorly, suggesting a functional gradient along a dorsal–ventral axis within this region. Moreover, region-of-interest analyses revealed that PM versus OG task only was associated with greater BOLD signal in left lateral rPFC, reflecting the requirement to maintain delayed intentions. Distinct aspects of this region were also transiently engaged at transitions between SO and SI conditions. These results are consistent with the hypothesis that some of the rostral prefrontal signal changes associated with PM performance reflect relative differences in SO versus SI processing
Causal hierarchy within the thalamo-cortical network in spike and wave discharges
Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al
Offline Memory Reprocessing: Involvement of the Brain's Default Network in Spontaneous Thought Processes
BACKGROUND: Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. METHODOLOGY/PRINCIPAL FINDING: Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. CONCLUSION/SIGNIFICANCE: These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences
Autism Spectrum Traits in the Typical Population Predict Structure and Function in the Posterior Superior Temporal Sulcus
Autism spectrum disorders (ASDs) are typically characterized by impaired social interaction and communication, narrow interests, and repetitive behaviors. The heterogeneity in the severity of these characteristics across individuals with ASD has led some researchers to suggest that these disorders form a continuum which extends into the general, or “typical,” population, and there is growing evidence that the extent to which typical adults display autistic traits, as measured using the autism-spectrum quotient (AQ), predicts performance on behavioral tasks that are impaired in ASD. Here, we show that variation in autism spectrum traits is related to cortical structure and function within the typical population. Voxel-based morphometry showed that increased AQ scores were associated with decreased white matter volume in the posterior superior temporal sulcus (pSTS), a region important in processing socially relevant stimuli and associated with structural and functional impairments in ASD. In addition, AQ was correlated with the extent of cortical deactivation of an adjacent area of pSTS during a Stroop task relative to rest, reflecting variation in resting state function. The results provide evidence that autism spectrum characteristics are reflected in neural structure and function across the typical (non-ASD) population
“Thinking about Not-Thinking”: Neural Correlates of Conceptual Processing during Zen Meditation
Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This “default network” has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation
Orienting asymmetries and lateralized processing of sounds in humans
<p>Abstract</p> <p>Background</p> <p>Lateralized processing of speech is a well studied phenomenon in humans. Both anatomical and neurophysiological studies support the view that nonhuman primates and other animal species also reveal hemispheric differences in areas involved in sound processing. In recent years, an increasing number of studies on a range of taxa have employed an orienting paradigm to investigate lateralized acoustic processing. In this paradigm, sounds are played directly from behind and the direction of turn is recorded. This assay rests on the assumption that a hemispheric asymmetry in processing is coupled to an orienting bias towards the contralateral side. To examine this largely untested assumption, speech stimuli as well as artificial sounds were presented to 224 right-handed human subjects shopping in supermarkets in Germany and in the UK. To verify the lateralized processing of the speech stimuli, we additionally assessed the brain activation in response to presentation of the different stimuli using functional magnetic resonance imaging (fMRI).</p> <p>Results</p> <p>In the naturalistic behavioural experiments, there was no difference in orienting behaviour in relation to the stimulus material (speech, artificial sounds). Contrary to our predictions, subjects revealed a significant left bias, irrespective of the sound category. This left bias was slightly but not significantly stronger in German subjects. The fMRI experiments confirmed that the speech stimuli evoked a significant left lateralized activation in BA44 compared to the artificial sounds.</p> <p>Conclusion</p> <p>These findings suggest that in adult humans, orienting biases are not necessarily coupled with lateralized processing of acoustic stimuli. Our results – as well as the inconsistent orienting biases found in different animal species – suggest that the orienting assay should be used with caution. Apparently, attention biases, experience, and experimental conditions may all affect head turning responses. Because of the complexity of the interaction of factors, the use of the orienting assay to determine lateralized processing of sound stimuli is discouraged.</p
rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex
Background: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson’s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of noninvasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [ 11 C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [ 11 C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [ 11 C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [ 11 C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help t
Working Together May Be Better: Activation of Reward Centers during a Cooperative Maze Task
Humans use theory of mind when predicting the thoughts and feelings and actions of others. There is accumulating evidence that cooperation with a computerized game correlates with a unique pattern of brain activation. To investigate the neural correlates of cooperation in real-time we conducted an fMRI hyperscanning study. We hypothesized that real-time cooperation to complete a maze task, using a blind-driving paradigm, would activate substrates implicated in theory of mind. We also hypothesized that cooperation would activate neural reward centers more than when participants completed the maze themselves. Of interest and in support of our hypothesis we found left caudate and putamen activation when participants worked together to complete the maze. This suggests that cooperation during task completion is inherently rewarding. This finding represents one of the first discoveries of a proximate neural mechanism for group based interactions in real-time, which indirectly supports the social brain hypothesis
Brain correlates of pro-social personality traits: a voxel-based morphometry study
Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.This research was funded by the Portuguese Foundation for Science and Technology (FCT): PIC/IC/83290/2007, which is supported by FEDER (POFC - COMPETE), and postdoctoral grant number: SFRH/BPD/75014/2010
- …