1,411 research outputs found
The atypical emission-line star Hen3-209
We analyse observations, spanning 15 years, dedicated to the extreme
emission-line object Hen3-209. Our photometric data indicate that the
luminosity of the star undergoes marked variations with a peak-to-peak
amplitude of 0.65mag. These variations are recurrent, with a period of
16.093+-0.005d. The spectrum of Hen3-209 is peculiar with many different lines
(HI, HeI, FeII,...) showing P Cygni profiles. The line profiles are apparently
changing in harmony with the photometry. The spectrum also contains [OIII]
lines that display a saddle profile topped by three peaks, with a maximum
separation of about 600km/s. Hen3-209 is most likely an evolved luminous object
suffering from mass ejection events and maybe belonging to a binary system.Comment: 6p, 5 fig, accepted for publication in MNRAS
(www.blackwell-synergy.com
Observational signatures of past mass-exchange episodes in massive binaries: The case of LSS 3074
The role of mass and momentum exchanges in close massive binaries is very
important in the subsequent evolution of the components. Such exchanges produce
several observational signatures such as asynchronous rotation and altered
chemical compositions, that remain after the stars detach again. We
investigated these effects for the close O-star binary LSS 3074 (O4 f + O6-7
:(f):), which is a good candidate for a past Roche lobe overflow (RLOF) episode
because of its very short orbital period, P = 2.185 days, and the luminosity
classes of both components. We determined a new orbital solution for the
system. We studied the photometric light curves to determine the inclination of
the orbit and Roche lobe filling factors of both stars. Using phase-resolved
spectroscopy, we performed the disentangling of the optical spectra of the two
stars. We then analysed the reconstructed primary and secondary spectra with
the CMFGEN model atmosphere code to determine stellar parameters, such as the
effective temperatures and surface gravities, and to constrain the chemical
composition of the components. We confirm the apparent low stellar masses and
radii reported in previous studies. We also find a strong overabundance in
nitrogen and a strong carbon and oxygen depletion in both primary and secondary
atmospheres, together with a strong enrichment in helium of the primary star.
We propose several possible evolutionary pathways through a RLOF process to
explain the current parameters of the system. We confirm that the system is
apparently in overcontact configuration and has lost a significant portion of
its mass to its surroundings. We suggest that some of the discrepancies between
the spectroscopic and photometric properties of LSS 3074 could stem from the
impact of a strong radiation pressure of the primary
A multi-method approach to radial-velocity measurement for single-object spectra
The derivation of radial velocities from large numbers of spectra that
typically result from survey work, requires automation. However, except for the
classical cases of slowly rotating late-type spectra, existing methods of
measuring Doppler shifts require fine-tuning to avoid a loss of accuracy due to
the idiosyncrasies of individual spectra. The radial velocity spectrometer
(RVS) on the Gaia mission, which will start operating very soon, prompted a new
attempt at creating a measurement pipeline to handle a wide variety of spectral
types.
The present paper describes the theoretical background on which this software
is based. However, apart from the assumption that only synthetic templates are
used, we do not rely on any of the characteristics of this instrument, so our
results should be relevant for most telescope-detector combinations.
We propose an approach based on the simultaneous use of several alternative
measurement methods, each having its own merits and drawbacks, and conveying
the spectral information in a different way, leading to different values for
the measurement. A comparison or a combination of the various results either
leads to a "best estimate" or indicates to the user that the observed spectrum
is problematic and should be analysed manually.
We selected three methods and analysed the relationships and differences
between them from a unified point of view; with each method an appropriate
estimator for the individual random error is chosen. We also develop a
procedure for tackling the problem of template mismatch in a systematic way.
Furthermore, we propose several tests for studying and comparing the
performance of the various methods as a function of the atmospheric parameters
of the observed objects. Finally, we describe a procedure for obtaining a
knowledge-based combination of the various Doppler-shift measurements.Comment: 16 pages, 4 figure
Universal computation by multi-particle quantum walk
A quantum walk is a time-homogeneous quantum-mechanical process on a graph
defined by analogy to classical random walk. The quantum walker is a particle
that moves from a given vertex to adjacent vertices in quantum superposition.
Here we consider a generalization of quantum walk to systems with more than one
walker. A continuous-time multi-particle quantum walk is generated by a
time-independent Hamiltonian with a term corresponding to a single-particle
quantum walk for each particle, along with an interaction term. Multi-particle
quantum walk includes a broad class of interacting many-body systems such as
the Bose-Hubbard model and systems of fermions or distinguishable particles
with nearest-neighbor interactions. We show that multi-particle quantum walk is
capable of universal quantum computation. Since it is also possible to
efficiently simulate a multi-particle quantum walk of the type we consider
using a universal quantum computer, this model exactly captures the power of
quantum computation. In principle our construction could be used as an
architecture for building a scalable quantum computer with no need for
time-dependent control
Amorphization of ZnAl2O4 spinel under heavy ion irradiation
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beam-line of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by Transmission Electron Microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5.1012 cm-2 up to a total amorphisation between 1x1013 and 1x1014 cm-2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-Ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV.nm-1
Simulation of quantum circuits by ow-rank sotabilizer decompositions
Recent work has explored using the stabilizer formalism to classically simulate quantum circuits containing a few non-Clifford gates. The computational cost of such methods is directly related to the notion of stabilizer rank, which for a pure state ψ is defined to be the smallest integer χ such that ψ is a superposition of χ stabilizer states.
Here we develop a comprehensive mathematical theory of the stabilizer rank and the
related approximate stabilizer rank. We also present a suite of classical simulation
algorithms with broader applicability and significantly improved performance over the
previous state-of-the-art. A new feature is the capability to simulate circuits composed
of Clifford gates and arbitrary diagonal gates, extending the reach of a previous algorithm specialized to the Clifford+T gate set. We implemented the new simulation
methods and used them to simulate quantum algorithms with 40-50 qubits and over
60 non-Clifford gates, without resorting to high-performance computers. We report a
simulation of the Quantum Approximate Optimization Algorithm in which we process
superpositions of χ ∼ 106
stabilizer states and sample from the full n-bit output distribution, improving on previous simulations which used ∼ 103
stabilizer states and
sampled only from single-qubit marginals. We also simulated instances of the Hidden
Shift algorithm with circuits including up to 64 T gates or 16 CCZ gates; these simulations showcase the performance gains available by optimizing the decomposition of a
circuit’s non-Clifford components
Constraining the fundamental parameters of the O-type binary CPD-41degr7733
Using a set of high-resolution spectra, we studied the physical and orbital
properties of the O-type binary CPD-41 7733, located in the core of \ngc. We
report the unambiguous detection of the secondary spectral signature and we
derive the first SB2 orbital solution of the system. The period is 5.6815 +/-
0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably
consists of stars of spectral types O8.5 and B3. As for other objects in the
cluster, we observe discrepant luminosity classifications while using
spectroscopic or brightness criteria. Still, the present analysis suggests that
both components display physical parameters close to those of typical O8.5 and
B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during
six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no
significant variability between the different pointings, nor within the
individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a
three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4
keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction,
is observed. The emission of CPD-41 7733 is thus very representative of typical
O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure
On the future of astrostatistics: statistical foundations and statistical practice
This paper summarizes a presentation for a panel discussion on "The Future of
Astrostatistics" held at the Statistical Challenges in Modern Astronomy V
conference at Pennsylvania State University in June 2011. I argue that the
emerging needs of astrostatistics may both motivate and benefit from
fundamental developments in statistics. I highlight some recent work within
statistics on fundamental topics relevant to astrostatistical practice,
including the Bayesian/frequentist debate (and ideas for a synthesis),
multilevel models, and multiple testing. As an important direction for future
work in statistics, I emphasize that astronomers need a statistical framework
that explicitly supports unfolding chains of discovery, with acquisition,
cataloging, and modeling of data not seen as isolated tasks, but rather as
parts of an ongoing, integrated sequence of analyses, with information and
uncertainty propagating forward and backward through the chain. A prototypical
example is surveying of astronomical populations, where source detection,
demographic modeling, and the design of survey instruments and strategies all
interact.Comment: 8 pp, 2 figures. To appear in "Statistical Challenges in Modern
Astronomy V," (Lecture Notes in Statistics, Vol. 209), ed. Eric D. Feigelson
and G. Jogesh Babu; publication planned for Sep 2012; see
http://www.springer.com/statistics/book/978-1-4614-3519-
Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing
Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas—the most general synthesis scenario—then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis
- …