1,411 research outputs found

    The atypical emission-line star Hen3-209

    Get PDF
    We analyse observations, spanning 15 years, dedicated to the extreme emission-line object Hen3-209. Our photometric data indicate that the luminosity of the star undergoes marked variations with a peak-to-peak amplitude of 0.65mag. These variations are recurrent, with a period of 16.093+-0.005d. The spectrum of Hen3-209 is peculiar with many different lines (HI, HeI, FeII,...) showing P Cygni profiles. The line profiles are apparently changing in harmony with the photometry. The spectrum also contains [OIII] lines that display a saddle profile topped by three peaks, with a maximum separation of about 600km/s. Hen3-209 is most likely an evolved luminous object suffering from mass ejection events and maybe belonging to a binary system.Comment: 6p, 5 fig, accepted for publication in MNRAS (www.blackwell-synergy.com

    Observational signatures of past mass-exchange episodes in massive binaries: The case of LSS 3074

    Full text link
    The role of mass and momentum exchanges in close massive binaries is very important in the subsequent evolution of the components. Such exchanges produce several observational signatures such as asynchronous rotation and altered chemical compositions, that remain after the stars detach again. We investigated these effects for the close O-star binary LSS 3074 (O4 f + O6-7 :(f):), which is a good candidate for a past Roche lobe overflow (RLOF) episode because of its very short orbital period, P = 2.185 days, and the luminosity classes of both components. We determined a new orbital solution for the system. We studied the photometric light curves to determine the inclination of the orbit and Roche lobe filling factors of both stars. Using phase-resolved spectroscopy, we performed the disentangling of the optical spectra of the two stars. We then analysed the reconstructed primary and secondary spectra with the CMFGEN model atmosphere code to determine stellar parameters, such as the effective temperatures and surface gravities, and to constrain the chemical composition of the components. We confirm the apparent low stellar masses and radii reported in previous studies. We also find a strong overabundance in nitrogen and a strong carbon and oxygen depletion in both primary and secondary atmospheres, together with a strong enrichment in helium of the primary star. We propose several possible evolutionary pathways through a RLOF process to explain the current parameters of the system. We confirm that the system is apparently in overcontact configuration and has lost a significant portion of its mass to its surroundings. We suggest that some of the discrepancies between the spectroscopic and photometric properties of LSS 3074 could stem from the impact of a strong radiation pressure of the primary

    A multi-method approach to radial-velocity measurement for single-object spectra

    Full text link
    The derivation of radial velocities from large numbers of spectra that typically result from survey work, requires automation. However, except for the classical cases of slowly rotating late-type spectra, existing methods of measuring Doppler shifts require fine-tuning to avoid a loss of accuracy due to the idiosyncrasies of individual spectra. The radial velocity spectrometer (RVS) on the Gaia mission, which will start operating very soon, prompted a new attempt at creating a measurement pipeline to handle a wide variety of spectral types. The present paper describes the theoretical background on which this software is based. However, apart from the assumption that only synthetic templates are used, we do not rely on any of the characteristics of this instrument, so our results should be relevant for most telescope-detector combinations. We propose an approach based on the simultaneous use of several alternative measurement methods, each having its own merits and drawbacks, and conveying the spectral information in a different way, leading to different values for the measurement. A comparison or a combination of the various results either leads to a "best estimate" or indicates to the user that the observed spectrum is problematic and should be analysed manually. We selected three methods and analysed the relationships and differences between them from a unified point of view; with each method an appropriate estimator for the individual random error is chosen. We also develop a procedure for tackling the problem of template mismatch in a systematic way. Furthermore, we propose several tests for studying and comparing the performance of the various methods as a function of the atmospheric parameters of the observed objects. Finally, we describe a procedure for obtaining a knowledge-based combination of the various Doppler-shift measurements.Comment: 16 pages, 4 figure

    Universal computation by multi-particle quantum walk

    Full text link
    A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. Here we consider a generalization of quantum walk to systems with more than one walker. A continuous-time multi-particle quantum walk is generated by a time-independent Hamiltonian with a term corresponding to a single-particle quantum walk for each particle, along with an interaction term. Multi-particle quantum walk includes a broad class of interacting many-body systems such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions. We show that multi-particle quantum walk is capable of universal quantum computation. Since it is also possible to efficiently simulate a multi-particle quantum walk of the type we consider using a universal quantum computer, this model exactly captures the power of quantum computation. In principle our construction could be used as an architecture for building a scalable quantum computer with no need for time-dependent control

    Amorphization of ZnAl2O4 spinel under heavy ion irradiation

    Get PDF
    ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beam-line of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by Transmission Electron Microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5.1012 cm-2 up to a total amorphisation between 1x1013 and 1x1014 cm-2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-Ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV.nm-1

    Simulation of quantum circuits by ow-rank sotabilizer decompositions

    Get PDF
    Recent work has explored using the stabilizer formalism to classically simulate quantum circuits containing a few non-Clifford gates. The computational cost of such methods is directly related to the notion of stabilizer rank, which for a pure state ψ is defined to be the smallest integer χ such that ψ is a superposition of χ stabilizer states. Here we develop a comprehensive mathematical theory of the stabilizer rank and the related approximate stabilizer rank. We also present a suite of classical simulation algorithms with broader applicability and significantly improved performance over the previous state-of-the-art. A new feature is the capability to simulate circuits composed of Clifford gates and arbitrary diagonal gates, extending the reach of a previous algorithm specialized to the Clifford+T gate set. We implemented the new simulation methods and used them to simulate quantum algorithms with 40-50 qubits and over 60 non-Clifford gates, without resorting to high-performance computers. We report a simulation of the Quantum Approximate Optimization Algorithm in which we process superpositions of χ ∼ 106 stabilizer states and sample from the full n-bit output distribution, improving on previous simulations which used ∼ 103 stabilizer states and sampled only from single-qubit marginals. We also simulated instances of the Hidden Shift algorithm with circuits including up to 64 T gates or 16 CCZ gates; these simulations showcase the performance gains available by optimizing the decomposition of a circuit’s non-Clifford components

    Constraining the fundamental parameters of the O-type binary CPD-41degr7733

    Get PDF
    Using a set of high-resolution spectra, we studied the physical and orbital properties of the O-type binary CPD-41 7733, located in the core of \ngc. We report the unambiguous detection of the secondary spectral signature and we derive the first SB2 orbital solution of the system. The period is 5.6815 +/- 0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably consists of stars of spectral types O8.5 and B3. As for other objects in the cluster, we observe discrepant luminosity classifications while using spectroscopic or brightness criteria. Still, the present analysis suggests that both components display physical parameters close to those of typical O8.5 and B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no significant variability between the different pointings, nor within the individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4 keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction, is observed. The emission of CPD-41 7733 is thus very representative of typical O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure

    On the future of astrostatistics: statistical foundations and statistical practice

    Full text link
    This paper summarizes a presentation for a panel discussion on "The Future of Astrostatistics" held at the Statistical Challenges in Modern Astronomy V conference at Pennsylvania State University in June 2011. I argue that the emerging needs of astrostatistics may both motivate and benefit from fundamental developments in statistics. I highlight some recent work within statistics on fundamental topics relevant to astrostatistical practice, including the Bayesian/frequentist debate (and ideas for a synthesis), multilevel models, and multiple testing. As an important direction for future work in statistics, I emphasize that astronomers need a statistical framework that explicitly supports unfolding chains of discovery, with acquisition, cataloging, and modeling of data not seen as isolated tasks, but rather as parts of an ongoing, integrated sequence of analyses, with information and uncertainty propagating forward and backward through the chain. A prototypical example is surveying of astronomical populations, where source detection, demographic modeling, and the design of survey instruments and strategies all interact.Comment: 8 pp, 2 figures. To appear in "Statistical Challenges in Modern Astronomy V," (Lecture Notes in Statistics, Vol. 209), ed. Eric D. Feigelson and G. Jogesh Babu; publication planned for Sep 2012; see http://www.springer.com/statistics/book/978-1-4614-3519-

    Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing

    Get PDF
    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas—the most general synthesis scenario—then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis
    • …
    corecore