418 research outputs found

    Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    Get PDF
    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework

    ‘What are you going to do, confiscate their passports?’ Professional perspectives on cross-border reproductive travel

    Get PDF
    Objective: This article reports findings from a UK-based study which explored the phenomenon of overseas travel for fertility treatment. The first phase of this project aimed to explore how infertility clinicians and others professionally involved in fertility treatment understand the nature and consequences of cross-border reproductive travel. Background: There are indications that, for a variety of reasons, people from the UK are increasingly travelling across national borders to access assisted reproductive technologies. While research with patients is growing, little is known about how ‘fertility tourism’ is perceived by health professionals and others with a close association with infertility patients. Methods: Using an interpretivist approach, this exploratory research included focussed discussions with 20 people professionally knowledgeable about patients who had either been abroad or were considering having treatment outside the UK. Semi-structured interviews were recorded, transcribed verbatim and subjected to a thematic analysis. Results: Three conceptual categories are developed from the data: ‘the autonomous patient’; ‘cross-border travel as risk’, and ‘professional responsibilities in harm minimisation’. Professionals construct nuanced, complex and sometimes contradictory narratives of the ‘fertility traveller’, as vulnerable and knowledgeable; as engaged in risky behaviour and in its active minimisation. Conclusions: There is little support for the suggestion that states should seek to prevent cross-border treatment. Rather, an argument is made for less direct strategies to safeguard patient interests. Further research is required to assess the impact of professional views and actions on patient choices and patient experiences of treatment, before, during and after travelling abroad

    A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Get PDF
    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system

    Uncoupling growth from phosphorus uptake in Lemna: Implications for use of duckweed in wastewater remediation and P recovery in temperate climates

    Get PDF
    Phosphorus (P) is an essential nutrient for crop growth and the second most limiting after N. Current supplies rely on P‐rich rocks that are unevenly distributed globally and exploited unsustainably, leading to concerns about future availability and therefore food security. Duckweeds (Lemnaceae) are aquatic macrophytes used in wastewater remediation with the potential for nutrient recycling as feed or fertilizer. The use of duckweeds in this way is confined to tropical regions as it has previously been assumed that growth in the colder seasons of the temperate regions would be insufficient. In this study, the combined effects of cool temperatures and short photoperiods on growth and P uptake and accumulation in Lemna were investigated under controlled laboratory conditions. Growth and P accumulation in Lemna can be uncoupled, with significant P removal from the medium and accumulation within the plants occurring even at 8°C and 6‐hr photoperiods. Direct measurement of radiolabeled phosphate uptake confirmed that while transport is strongly temperature dependent, uptake can still be measured at 5°C. Prior phosphate starvation of the duckweed and use of nitrate as the nitrogen (N) source also greatly increased the rate of P removal and in‐cell accumulation. These results form the basis for further examination of the feasibility of duckweed‐based systems for wastewater treatment and P recapture in temperate climates, particularly in small, rural treatment works

    Nucleotide Sequence of a Pea (Pisum sativum L.) [beta]-1,3-Glucanase Gene

    Full text link

    A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Get PDF
    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (40,000 pound force thrust) (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a Simulink (R) library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system

    101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.

    Get PDF
    Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species

    Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar

    Get PDF
    Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approache
    • 

    corecore