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Introduction

@ Distributed control architecture has been slow to transition
into aerospace applications because challenges perceived to
outweigh benefits

Benefits Challenges

@ Computational effort spread @ Electronics needed to withstand
across the control system harsh engine environment

@ Engine control unit (ECU) not @ Specification and testing of
responsible for input/output reliable controller network
conditioning must be done

@ Digital network replaces @ Collaboration to advance
analog wiring, reducing technology must protect
complexity and weight of intellectual properties of
connections participants

@ Modularity allows for easy @ Testing of new hardware,
replacement, upgrading, or control architectures is limited
maintenance of parts within present design process
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Introduction

@ A hardware-in-the-loop (HIL) system is under development at
NASA that will allow for testing hardware models and
prototypes in various control configurations without the need
for a physical engine

@ Control and engine design can proceed in parallel
@ Lowers the cost for hardware, controller testing
o Simulation of conditions too extreme for test cells

@ Requires high-fidelity hardware and network models so
simulations accurately represent tests on actual hardware

@ Interfaces between elements of the control system, important
in distributed architectures, can be leveraged to develop a
modeling framework
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Baseline controller model

@ Development of the system is around a baseline model:
C-MAPSS40k (the ‘unstructured’ model)

@ Commercial Modular Aero-Propulsion System Simulation,
40,000 Ibs-thrust
@ Zero-dimensional simulation of a twin-spool turbofan engine

@ Controller contains simple sensor and actuator models along
with setpoint controller and limiters

@ Structure introduced, defining clear separation between
engine and controller models
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Baseline controller model

@ Two sets of interfaces exist in this baseline system

e Between controller, engine and wrapper models
9 Within controller model

0 May define a third interface: Connections between components on individual sensors, actuators
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Distributed controller model

Controller Model
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@ Distributed controller model includes data conditioning, conversion, and
processing on the sensors and actuators, and a controller network

@ Higher fidelity computational models expected to more closely match results
from tests with real hardware communicating over a real network
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Distributed controller model

@ Network represents physical decoupling of sensors,
actuators, and the controller in an engine controller system

o Data transfer effects need to be modeled to understand how
these affect reliability and performance of closed-loop system

@ Presently modeled as a delay and packet loss (stochastically)

o If higher fidelity is required, packet-level models may be
constructed
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Distributed controller model

@ Smart transducers contain sensor or actuator hardware with local
data conditioning and processing functionality

@ Simulink® library under development containing building blocks for
modularly creating models of smart transducers

@ Library follows the IEEE 1451 standard for smart transducers

@ Smart Transducer Interface Module (STIM) contains transducer,
signal conditioning and conversion hardware (analog signals)

@ Network Capable Application Processor (NCAP) contains
microprocessor and network adapter (digital signals)

@ Transducer Electronic Data Sheet (TEDS), stored on STIM,
contains calibration and manufacturer information
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Summary of this approach

Controller Model
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Imposing this framework on C-MAPSS40k

@ To demonstrate how framework affects simulation results, the
C-MAPSS40k controller model was modified to follow it

o Replace sensor models with smart sensor models (sensor,
signal conditioning filter, analog-to-digital conversion and
averaging blocks from Smart Sensor Library)

@ Replace actuator models with smart actuator models
(extrapolation, digital-to-analog conversion, signal conditioning
filter, and actuator library blocks)

o Add feedback sensors for local loop closure on two actuators

@ Place network block on output of each sensor, input of each
actuator

@ Three models considered for comparison

© Unstructured model (baseline C-MAPSS40k controller)
@ Distributed model (smart transducer models, no network)
© Networked model (smart transducer and network models)
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Imposing this framework on C-MAPSS40k

@ Sensors and actuator configured using information from
C-MAPSS40k for bandwidths, ranges; generic data sheets for
conditioning, processing components

@ Network model configured to exaggerate time delay, packet
loss probability to better demonstrate effects of element

Sensor model configuration Network cable model configuration
Sensor input range (psi) 0 to 30 Average delay (s) 0.001
Sensor output range (V) 0 to 0.07 Delay standard deviation (s) 0.003
Sensor rise time (s) 0.0879 Packet-drop probability (%) 15
ADC range (V) —5tob
ADC resolution (bits) 8
Averaging window (sample) 3
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Imposing this framework on C-MAPSS40k

@ Controller model further modified to allow for multiple update rates
within simulation

@ Baseline model updates at a fixed time-step equal to the controller
update rate

@ In physical system, each element operates asynchronously at its own rate

@ Different (fixed) update rates assigned to sensors, actuators, control law
to improve realism of model

@ Model can be viewed as collection of functions accessing network at
different rates

simulation
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Comparing simulation results

@ Provided a 60-second multi-step throttle command

@ Tracking and thrust responses not significantly different, despite
more-detailed hardware models, presence of a network model

o
= 1.6 % T T
© — unstructured
— . .
v — distributed A R
= 1.4 —— networked - R N
v ---:-command D
|- “
Q1.2 A |
q) AN
£ A
‘QO Vi
CICJ 1 | | | | |

0 10 20 30 40 50 60

time, s
x10%

thrust, Ibs
- N
I I
(

|
0 10 20 30 40 50 60
time, s

NASA Glenn Research Center, WWW.Nasa.gov
Intelligent Control & Autonomy Branch July 28, 2014 13 /21



National Aeronatics and Space Administration

Comparing simulation results
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@ Biggest difference between simulation results seen by comparing outputs
of actuators and sensors (here, fuel flow actuator and Pso sensor)

@ Exaggerated network model does not have much effect on results
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Comparing simulation results
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@ In addition to comparing simulation results, it is also important to verify
that real-time simulation is possible

@ Each model simulated 200 times, recording total run time

@ Variations likely due to processor demands during simulation
@ Increased average time for distributed and networked models due to
added complexity

@ On average, distributed (3.06 times) and networked (2.35 times) models
run faster than real-time, suggesting model may be run with hardware in

the loop
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Summary and Conclusion

@ Framework presented for developing models for
hardware-in-the-loop systems, based on interfaces present
in the system

@ Between engine, controller, and user input source
@ Between control hardware and control law (over a network)
@ Within each individual piece of hardware

@ Approach introduces modularity, enabling independent

development of control algorithm, sensor, actuator, and
engine models compatible with framework

@ Simulink library, based on the I[EEE 1451 framework, simplifies
creation of smart transducer hardware models

NASA Glenn Research Center, WWW.nasa.gov
Intelligent Control & Autonomy Branch July 28, 2014 16 / 21



National Aeronatics and Space Administration

Summary and Conclusion

@ Trade-offs of this design choice must be weighed

Benefits Drawbacks

@ Decoupled systems enable @ Limited flexibility of independent
collaboration, independent development at higher levels
development of models @ Models may relay information

@ Protection of intellectual unnecessary for control algorithm,
property by using compiled but needed for analysis, adding
code in place of Simulink complexity
library blocks @ More accurate models increase

@ Use of Simulink library allows computational cost, real-time
similar models with varying operation no longer guaranteed
fidelity to be developed, @ At this time, hardware and

interchanged easily network models not yet

validated, so simulations only act
as proof-of-concept
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Summary and Conclusion

@ Simulation of C-MAPSS40k using this framework shows
quantization effects in tracking

@ Overall results otherwise differ little from baseline
@ Simulation (on average) runs faster than real-time
@ Future investigation may involve:

@ Validation of network model against physical network

@ Testing of framework in simulation with hardware in loop to
verify accuracy of models in predicting actual system behavior
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Thanks.

Questions?
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